Enhancing computational efficiency in solving Knapsack problem: insights from algorithmic parallelization and optimization
The Knapsack problem is a combinatorial optimization problem whose exact solution using exhaustive search method is impractical. Hence, the application of approximate algorithms is usually considered when encountering this optimization problem. This study optimized some approximate algorithms: greed...
Uloženo v:
| Vydáno v: | Advances in Computing and Engineering Ročník 4; číslo 2; s. 52 - 65 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Academy Publishing Center
12.08.2024
|
| Témata: | |
| ISSN: | 2735-5977, 2735-5985 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Knapsack problem is a combinatorial optimization problem whose exact solution using exhaustive search method is impractical. Hence, the application of approximate algorithms is usually considered when encountering this optimization problem. This study optimized some approximate algorithms: greedy, dynamic programming, and branch-and-bound for the Knapsack problem with specific objectives of evaluating their time and program complexity, comparing efficiencies, and enhancing performance. Our methodology involved utilizing advanced Parallelization techniques to accelerate the implementation of loop-based optimization algorithms by distributing tasks across multiple processing units concurrently. This simultaneous execution minimized computational time, enhanced overall efficiency, and improved scalability, enabling effective resolution of large-scale optimization challenges. Additionally, coefficients for the Knapsack model were generated using a random number generation algorithm. Through analysis and experimental runs using Halstead metrics and time complexity measures, significant improvements in the enhanced algorithms compared to classical approaches were revealed, particularly in terms of program complexity and computational speed. Notably, the enhanced algorithms demonstrated superior time complexity across varying input sizes, indicating their potential as more efficient solutions for the Knapsack Problem. This research contributes to advancing Theoretical Computer Science by offering a new computational approach for tackling intricate knapsack-model-based problems, thereby expanding the toolkit for addressing real world challenges across diverse application areas.Received: 03 June 2024 Accepted: 12 July 2024 Published: 12 August 2024 |
|---|---|
| AbstractList | The Knapsack problem is a combinatorial optimization problem whose exact solution using exhaustive search method is impractical. Hence, the application of approximate algorithms is usually considered when encountering this optimization problem. This study optimized some approximate algorithms: greedy, dynamic programming, and branch-and-bound for the Knapsack problem with specific objectives of evaluating their time and program complexity, comparing efficiencies, and enhancing performance. Our methodology involved utilizing advanced Parallelization techniques to accelerate the implementation of loop-based optimization algorithms by distributing tasks across multiple processing units concurrently. This simultaneous execution minimized computational time, enhanced overall efficiency, and improved scalability, enabling effective resolution of large-scale optimization challenges. Additionally, coefficients for the Knapsack model were generated using a random number generation algorithm. Through analysis and experimental runs using Halstead metrics and time complexity measures, significant improvements in the enhanced algorithms compared to classical approaches were revealed, particularly in terms of program complexity and computational speed. Notably, the enhanced algorithms demonstrated superior time complexity across varying input sizes, indicating their potential as more efficient solutions for the Knapsack Problem. This research contributes to advancing Theoretical Computer Science by offering a new computational approach for tackling intricate knapsack-model-based problems, thereby expanding the toolkit for addressing real world challenges across diverse application areas.Received: 03 June 2024 Accepted: 12 July 2024 Published: 12 August 2024 |
| Author | Elisha, Okeyinka Aderemi Abdullahi, Ibrahim Isah, Adamu Bin Usman, Bashar Rabiu, Idris Abdulrahman, Abdulganiyyu |
| Author_xml | – sequence: 1 givenname: Bashar surname: Bin Usman fullname: Bin Usman, Bashar – sequence: 2 givenname: Okeyinka Aderemi surname: Elisha fullname: Elisha, Okeyinka Aderemi – sequence: 3 givenname: Ibrahim surname: Abdullahi fullname: Abdullahi, Ibrahim – sequence: 4 givenname: Idris surname: Rabiu fullname: Rabiu, Idris – sequence: 5 givenname: Adamu surname: Isah fullname: Isah, Adamu – sequence: 6 givenname: Abdulganiyyu surname: Abdulrahman fullname: Abdulrahman, Abdulganiyyu |
| BookMark | eNo9kdtKxDAQhoMoeHwBr_ICW9OkSRvvZFkPKHij12E6m-xG06QkVdCnt7uKVzP8__Ax8J2Sw5iiJeSyZhWvFedXN8tVxRlvKtZUvOo6eUBOeCvkQupOHv7vbXtMLkp5Y4xxzYXu6hPyvYpbiOjjhmIaxo8JJp8iBGqd8-htxC_qIy0pfO5uHiOMBfCdjjn1wQ7Xc1n8ZjsV6nIaKIRNyn7aDh7pCBlCsMF_75kU4pqmcfLDX3BOjhyEYi_-5hl5vV29LO8XT893D8ubpwXWcv5bcCl610sHgEI3SvddI4Rzireqta1rcdc386nEOUa0WnG2xkZZzVE7cUYefrnrBG9mzH6A_GUSeLMPUt4YyJPHYI3tlJNOaqVr1rAae8WBobNrJmUPrp5Z_JeFOZWSrfvn1czsZZhZhtnJMKwx3MwyxA9V74Jc |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.21622/ACE.2024.04.2.885 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2735-5985 |
| EndPage | 65 |
| ExternalDocumentID | oai_doaj_org_article_e86f5f596910401cb62a0cfed055baf1 10_21622_ACE_2024_04_2_885 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c1535-3253bfb5faac39469b8433ff62767e7f7c53bf45355c3ffcce9620dc46e92c9f3 |
| IEDL.DBID | DOA |
| ISSN | 2735-5977 |
| IngestDate | Fri Oct 03 12:44:06 EDT 2025 Sat Nov 29 06:22:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1535-3253bfb5faac39469b8433ff62767e7f7c53bf45355c3ffcce9620dc46e92c9f3 |
| OpenAccessLink | https://doaj.org/article/e86f5f596910401cb62a0cfed055baf1 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e86f5f596910401cb62a0cfed055baf1 crossref_primary_10_21622_ACE_2024_04_2_885 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-12 |
| PublicationDateYYYYMMDD | 2024-08-12 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationTitle | Advances in Computing and Engineering |
| PublicationYear | 2024 |
| Publisher | Academy Publishing Center |
| Publisher_xml | – name: Academy Publishing Center |
| SSID | ssj0002923981 |
| Score | 2.2650082 |
| Snippet | The Knapsack problem is a combinatorial optimization problem whose exact solution using exhaustive search method is impractical. Hence, the application of... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 52 |
| SubjectTerms | combinatorial, knapsack, heuristics, halstead metrics, time complexity, random number generation |
| Title | Enhancing computational efficiency in solving Knapsack problem: insights from algorithmic parallelization and optimization |
| URI | https://doaj.org/article/e86f5f596910401cb62a0cfed055baf1 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2735-5985 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002923981 issn: 2735-5977 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BThsxELWqqIdeEKhUTaHIh97Qis3s2l5zAxRUqRXiACg3y_Z6kohkg5LQA1_fmd0tSk9cuNrWynozmvEb7bwR4kdAxFDkIcu9LbKysimzMYXMIHmLGSWs21mHD7_NzU01mdjbnVFf_E9YJw_cAXeWKo0KldWU14gLxKDB5xFTnSsVPLbEh149O2SKYzBY1rVjtkXpWWUsstZ1zMBIA5xdXI2JGkLJKqdAvqL-y0o74v1tlrneF3v981BedNc6EB9S81m8jJsZy2I0UxnbIQx9AU-mVv-BmyflvJHkRVwdkL8a_7Tx8VH2w2LOaXPDHHwjuZlE-sV0tZ5vZ8t5lKz8vVikRd-NKX1TyxVFkWW_cCjur8d3Vz-zfmZCFil2qawAVQQMCr2PhSXuG6qyKBA1GG2SQRN5v6SjKtJyjMlqyOtY6mQhWiy-iEGzatJXIUOAWmmrPVS6rGqoMEVUBi2QOcraDMXpP8zcUyeN4YhStAg7Qtgxwi4vHThCeCguGdbXkyxr3S6QsV1vbPeWsb-9x0eOxCe-GReGR3AsBtv1c_ouPsY_2_lmfdL60V9Pjs6m |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+computational+efficiency+in+solving+Knapsack+problem%3A+insights+from+algorithmic+parallelization+and+optimization&rft.jtitle=Advances+in+Computing+and+Engineering&rft.au=Bashar+Bin+Usman&rft.au=Okeyinka+Aderemi+Elisha&rft.au=Ibrahim+Abdullahi&rft.au=Idris+Rabiu&rft.date=2024-08-12&rft.pub=Academy+Publishing+Center&rft.issn=2735-5977&rft.eissn=2735-5985&rft.volume=4&rft.issue=2&rft.spage=52&rft.epage=65&rft_id=info:doi/10.21622%2FACE.2024.04.2.885&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e86f5f596910401cb62a0cfed055baf1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2735-5977&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2735-5977&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2735-5977&client=summon |