Enhancing computational efficiency in solving Knapsack problem: insights from algorithmic parallelization and optimization

The Knapsack problem is a combinatorial optimization problem whose exact solution using exhaustive search method is impractical. Hence, the application of approximate algorithms is usually considered when encountering this optimization problem. This study optimized some approximate algorithms: greed...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in Computing and Engineering Ročník 4; číslo 2; s. 52 - 65
Hlavní autoři: Bin Usman, Bashar, Elisha, Okeyinka Aderemi, Abdullahi, Ibrahim, Rabiu, Idris, Isah, Adamu, Abdulrahman, Abdulganiyyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Academy Publishing Center 12.08.2024
Témata:
ISSN:2735-5977, 2735-5985
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Knapsack problem is a combinatorial optimization problem whose exact solution using exhaustive search method is impractical. Hence, the application of approximate algorithms is usually considered when encountering this optimization problem. This study optimized some approximate algorithms: greedy, dynamic programming, and branch-and-bound for the Knapsack problem with specific objectives of evaluating their time and program complexity, comparing efficiencies, and enhancing performance. Our methodology involved utilizing advanced Parallelization techniques to accelerate the implementation of loop-based optimization algorithms by distributing tasks across multiple processing units concurrently. This simultaneous execution minimized computational time, enhanced overall efficiency, and improved scalability, enabling effective resolution of large-scale optimization challenges. Additionally, coefficients for the Knapsack model were generated using a random number generation algorithm. Through analysis and experimental runs using Halstead metrics and time complexity measures, significant improvements in the enhanced algorithms compared to classical approaches were revealed, particularly in terms of program complexity and computational speed. Notably, the enhanced algorithms demonstrated superior time complexity across varying input sizes, indicating their potential as more efficient solutions for the Knapsack Problem. This research contributes to advancing Theoretical Computer Science by offering a new computational approach for tackling intricate knapsack-model-based problems, thereby expanding the toolkit for addressing real world challenges across diverse application areas.Received: 03 June 2024 Accepted: 12 July 2024 Published: 12 August 2024
AbstractList The Knapsack problem is a combinatorial optimization problem whose exact solution using exhaustive search method is impractical. Hence, the application of approximate algorithms is usually considered when encountering this optimization problem. This study optimized some approximate algorithms: greedy, dynamic programming, and branch-and-bound for the Knapsack problem with specific objectives of evaluating their time and program complexity, comparing efficiencies, and enhancing performance. Our methodology involved utilizing advanced Parallelization techniques to accelerate the implementation of loop-based optimization algorithms by distributing tasks across multiple processing units concurrently. This simultaneous execution minimized computational time, enhanced overall efficiency, and improved scalability, enabling effective resolution of large-scale optimization challenges. Additionally, coefficients for the Knapsack model were generated using a random number generation algorithm. Through analysis and experimental runs using Halstead metrics and time complexity measures, significant improvements in the enhanced algorithms compared to classical approaches were revealed, particularly in terms of program complexity and computational speed. Notably, the enhanced algorithms demonstrated superior time complexity across varying input sizes, indicating their potential as more efficient solutions for the Knapsack Problem. This research contributes to advancing Theoretical Computer Science by offering a new computational approach for tackling intricate knapsack-model-based problems, thereby expanding the toolkit for addressing real world challenges across diverse application areas.Received: 03 June 2024 Accepted: 12 July 2024 Published: 12 August 2024
Author Elisha, Okeyinka Aderemi
Abdullahi, Ibrahim
Isah, Adamu
Bin Usman, Bashar
Rabiu, Idris
Abdulrahman, Abdulganiyyu
Author_xml – sequence: 1
  givenname: Bashar
  surname: Bin Usman
  fullname: Bin Usman, Bashar
– sequence: 2
  givenname: Okeyinka Aderemi
  surname: Elisha
  fullname: Elisha, Okeyinka Aderemi
– sequence: 3
  givenname: Ibrahim
  surname: Abdullahi
  fullname: Abdullahi, Ibrahim
– sequence: 4
  givenname: Idris
  surname: Rabiu
  fullname: Rabiu, Idris
– sequence: 5
  givenname: Adamu
  surname: Isah
  fullname: Isah, Adamu
– sequence: 6
  givenname: Abdulganiyyu
  surname: Abdulrahman
  fullname: Abdulrahman, Abdulganiyyu
BookMark eNo9kdtKxDAQhoMoeHwBr_ICW9OkSRvvZFkPKHij12E6m-xG06QkVdCnt7uKVzP8__Ax8J2Sw5iiJeSyZhWvFedXN8tVxRlvKtZUvOo6eUBOeCvkQupOHv7vbXtMLkp5Y4xxzYXu6hPyvYpbiOjjhmIaxo8JJp8iBGqd8-htxC_qIy0pfO5uHiOMBfCdjjn1wQ7Xc1n8ZjsV6nIaKIRNyn7aDh7pCBlCsMF_75kU4pqmcfLDX3BOjhyEYi_-5hl5vV29LO8XT893D8ubpwXWcv5bcCl610sHgEI3SvddI4Rzireqta1rcdc386nEOUa0WnG2xkZZzVE7cUYefrnrBG9mzH6A_GUSeLMPUt4YyJPHYI3tlJNOaqVr1rAae8WBobNrJmUPrp5Z_JeFOZWSrfvn1czsZZhZhtnJMKwx3MwyxA9V74Jc
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.21622/ACE.2024.04.2.885
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2735-5985
EndPage 65
ExternalDocumentID oai_doaj_org_article_e86f5f596910401cb62a0cfed055baf1
10_21622_ACE_2024_04_2_885
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c1535-3253bfb5faac39469b8433ff62767e7f7c53bf45355c3ffcce9620dc46e92c9f3
IEDL.DBID DOA
ISSN 2735-5977
IngestDate Fri Oct 03 12:44:06 EDT 2025
Sat Nov 29 06:22:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1535-3253bfb5faac39469b8433ff62767e7f7c53bf45355c3ffcce9620dc46e92c9f3
OpenAccessLink https://doaj.org/article/e86f5f596910401cb62a0cfed055baf1
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_e86f5f596910401cb62a0cfed055baf1
crossref_primary_10_21622_ACE_2024_04_2_885
PublicationCentury 2000
PublicationDate 2024-08-12
PublicationDateYYYYMMDD 2024-08-12
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-12
  day: 12
PublicationDecade 2020
PublicationTitle Advances in Computing and Engineering
PublicationYear 2024
Publisher Academy Publishing Center
Publisher_xml – name: Academy Publishing Center
SSID ssj0002923981
Score 2.2650082
Snippet The Knapsack problem is a combinatorial optimization problem whose exact solution using exhaustive search method is impractical. Hence, the application of...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 52
SubjectTerms combinatorial, knapsack, heuristics, halstead metrics, time complexity, random number generation
Title Enhancing computational efficiency in solving Knapsack problem: insights from algorithmic parallelization and optimization
URI https://doaj.org/article/e86f5f596910401cb62a0cfed055baf1
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2735-5985
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002923981
  issn: 2735-5977
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BThsxELWqqIdeEKhUTaHIh97Qis3s2l5zAxRUqRXiACg3y_Z6kohkg5LQA1_fmd0tSk9cuNrWynozmvEb7bwR4kdAxFDkIcu9LbKysimzMYXMIHmLGSWs21mHD7_NzU01mdjbnVFf_E9YJw_cAXeWKo0KldWU14gLxKDB5xFTnSsVPLbEh149O2SKYzBY1rVjtkXpWWUsstZ1zMBIA5xdXI2JGkLJKqdAvqL-y0o74v1tlrneF3v981BedNc6EB9S81m8jJsZy2I0UxnbIQx9AU-mVv-BmyflvJHkRVwdkL8a_7Tx8VH2w2LOaXPDHHwjuZlE-sV0tZ5vZ8t5lKz8vVikRd-NKX1TyxVFkWW_cCjur8d3Vz-zfmZCFil2qawAVQQMCr2PhSXuG6qyKBA1GG2SQRN5v6SjKtJyjMlqyOtY6mQhWiy-iEGzatJXIUOAWmmrPVS6rGqoMEVUBi2QOcraDMXpP8zcUyeN4YhStAg7Qtgxwi4vHThCeCguGdbXkyxr3S6QsV1vbPeWsb-9x0eOxCe-GReGR3AsBtv1c_ouPsY_2_lmfdL60V9Pjs6m
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+computational+efficiency+in+solving+Knapsack+problem%3A+insights+from+algorithmic+parallelization+and+optimization&rft.jtitle=Advances+in+Computing+and+Engineering&rft.au=Bashar+Bin+Usman&rft.au=Okeyinka+Aderemi+Elisha&rft.au=Ibrahim+Abdullahi&rft.au=Idris+Rabiu&rft.date=2024-08-12&rft.pub=Academy+Publishing+Center&rft.issn=2735-5977&rft.eissn=2735-5985&rft.volume=4&rft.issue=2&rft.spage=52&rft.epage=65&rft_id=info:doi/10.21622%2FACE.2024.04.2.885&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e86f5f596910401cb62a0cfed055baf1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2735-5977&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2735-5977&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2735-5977&client=summon