The Identity Problem in the special affine group of $\mathbb{Z}^2

We consider semigroup algorithmic problems in the Special Affine group $\mathsf{SA}(2, \mathbb{Z}) = \mathbb{Z}^2 \rtimes \mathsf{SL}(2, \mathbb{Z})$, which is the group of affine transformations of the lattice $\mathbb{Z}^2$ that preserve orientation. Our paper focuses on two decision problems intr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Logical methods in computer science Ročník 21, Issue 2
Hlavní autor: Dong, Ruiwen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Logical Methods in Computer Science e.V 09.06.2025
Témata:
ISSN:1860-5974, 1860-5974
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider semigroup algorithmic problems in the Special Affine group $\mathsf{SA}(2, \mathbb{Z}) = \mathbb{Z}^2 \rtimes \mathsf{SL}(2, \mathbb{Z})$, which is the group of affine transformations of the lattice $\mathbb{Z}^2$ that preserve orientation. Our paper focuses on two decision problems introduced by Choffrut and Karhum\"{a}ki (2005): the Identity Problem (does a semigroup contain a neutral element?) and the Group Problem (is a semigroup a group?) for finitely generated sub-semigroups of $\mathsf{SA}(2, \mathbb{Z})$. We show that both problems are decidable and NP-complete. Since $\mathsf{SL}(2, \mathbb{Z}) \leq \mathsf{SA}(2, \mathbb{Z}) \leq \mathsf{SL}(3, \mathbb{Z})$, our result extends that of Bell, Hirvensalo and Potapov (2017) on the NP-completeness of both problems in $\mathsf{SL}(2, \mathbb{Z})$, and contributes a first step towards the open problems in $\mathsf{SL}(3, \mathbb{Z})$.
AbstractList We consider semigroup algorithmic problems in the Special Affine group $\mathsf{SA}(2, \mathbb{Z}) = \mathbb{Z}^2 \rtimes \mathsf{SL}(2, \mathbb{Z})$, which is the group of affine transformations of the lattice $\mathbb{Z}^2$ that preserve orientation. Our paper focuses on two decision problems introduced by Choffrut and Karhum\"{a}ki (2005): the Identity Problem (does a semigroup contain a neutral element?) and the Group Problem (is a semigroup a group?) for finitely generated sub-semigroups of $\mathsf{SA}(2, \mathbb{Z})$. We show that both problems are decidable and NP-complete. Since $\mathsf{SL}(2, \mathbb{Z}) \leq \mathsf{SA}(2, \mathbb{Z}) \leq \mathsf{SL}(3, \mathbb{Z})$, our result extends that of Bell, Hirvensalo and Potapov (2017) on the NP-completeness of both problems in $\mathsf{SL}(2, \mathbb{Z})$, and contributes a first step towards the open problems in $\mathsf{SL}(3, \mathbb{Z})$.
Author Dong, Ruiwen
Author_xml – sequence: 1
  givenname: Ruiwen
  surname: Dong
  fullname: Dong, Ruiwen
BookMark eNpNkDtPwzAUhS1UJErpH2DKwABDwL5-s1UVj0qVYCgLQliOY7ep0rhywlAh_juhRYgz3HN1hm_4TtGgiY1H6JzgayZAq5t649ocyCXcArkCDPwIDYkSOOdassG__wSN23aN-1BKFIghmixWPpuVvumqbpc9p1jUfpNVTdb1e7v1rrJ1ZkOoGp8tU_zYZjFkF28b262K4vP16x3O0HGwdevHvz1CL_d3i-ljPn96mE0n89wRTnlOCiUJDSwQXjpcBkmZpGBtQSnnUGIhJLNKKGq1EtppzzRwoSR3BWdACzpCswO3jHZttqna2LQz0VZmP8S0NDZ1lau9KamjpSIalNMMa6t9kCT4wITHUuLQs-DAcim2bfLhj0ew2Ts1P04NEAP70zul3xwtakA
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.46298/lmcs-21(2:21)2025
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-5974
ExternalDocumentID oai_doaj_org_article_d3c3d81928c9409a9ef71fef46e0770f
10_46298_lmcs_21_2_21_2025
GroupedDBID .4S
.DC
29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADMLS
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
MK~
ML~
M~E
OK1
OVT
P2P
TR2
TUS
XSB
ID FETCH-LOGICAL-c1535-1b8713f4f15dc0df734732aab33552d06674a8683a9869c9e49256875cb5423b3
IEDL.DBID DOA
ISSN 1860-5974
IngestDate Fri Oct 03 12:53:36 EDT 2025
Sat Nov 29 07:50:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1535-1b8713f4f15dc0df734732aab33552d06674a8683a9869c9e49256875cb5423b3
OpenAccessLink https://doaj.org/article/d3c3d81928c9409a9ef71fef46e0770f
ParticipantIDs doaj_primary_oai_doaj_org_article_d3c3d81928c9409a9ef71fef46e0770f
crossref_primary_10_46298_lmcs_21_2_21_2025
PublicationCentury 2000
PublicationDate 2025-06-09
PublicationDateYYYYMMDD 2025-06-09
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-09
  day: 09
PublicationDecade 2020
PublicationTitle Logical methods in computer science
PublicationYear 2025
Publisher Logical Methods in Computer Science e.V
Publisher_xml – name: Logical Methods in Computer Science e.V
SSID ssj0000331826
Score 2.3406563
Snippet We consider semigroup algorithmic problems in the Special Affine group $\mathsf{SA}(2, \mathbb{Z}) = \mathbb{Z}^2 \rtimes \mathsf{SL}(2, \mathbb{Z})$, which is...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms computer science - computational complexity
computer science - discrete mathematics
mathematics - group theory
Title The Identity Problem in the special affine group of $\mathbb{Z}^2
URI https://doaj.org/article/d3c3d81928c9409a9ef71fef46e0770f
Volume 21, Issue 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPHjxLdYXOfSgyNJNso_EW5UWD1p6UCgiLnliQbfSVkFEf7uT7FbqyYuXHJbdJXyzO_k-mPkGoZZMY2M405HOQZskUtJIKqO8jWtOiObc6GDiepX3-3w4FIOFUV--JqyyB66AaxummfGuXVwL0CJSWJcTZ12S2TjPY-ezL7CeBTEVcjBjnjhXXTJJRgVvPz3raUTJMT2j5AQkf_rrJFow7A8nS28drdaUEHeqrWygJVtuorX5uAVc_31bqAMhxXVj7TseVJNg8KjEwOHwtJojj6VzwBtxaNbAY4db90BJH5X6uPt8oNvotte9ubiM6gkIkYZMlEZEgZ5hLnEkNTo2LmdJzqiUigFNoMYXqCaSZ5xJwTOhhfVWgxlIEK1S4EmK7aBGOS7tLsLKZowaLqwVCiSx4TEwF8KUk0TDY3ETnc7RKF4qo4sCBELArvDYFZQUNCyAXROde8B-7vQm1eEChK6oQ1f8Fbq9_3jJPlrxGwrVW-IANWaTV3uIlvXbbDSdHIWvAtbrr-43Vj67nA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Identity+Problem+in+the+special+affine+group+of+%24%5Cmathbb%7BZ%7D%5E2&rft.jtitle=Logical+methods+in+computer+science&rft.au=Dong%2C+Ruiwen&rft.date=2025-06-09&rft.issn=1860-5974&rft.eissn=1860-5974&rft.volume=21%2C+Issue+2&rft_id=info:doi/10.46298%2Flmcs-21%282%3A21%292025&rft.externalDBID=n%2Fa&rft.externalDocID=10_46298_lmcs_21_2_21_2025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon