The Identity Problem in the special affine group of $\mathbb{Z}^2
We consider semigroup algorithmic problems in the Special Affine group $\mathsf{SA}(2, \mathbb{Z}) = \mathbb{Z}^2 \rtimes \mathsf{SL}(2, \mathbb{Z})$, which is the group of affine transformations of the lattice $\mathbb{Z}^2$ that preserve orientation. Our paper focuses on two decision problems intr...
Uloženo v:
| Vydáno v: | Logical methods in computer science Ročník 21, Issue 2 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Logical Methods in Computer Science e.V
09.06.2025
|
| Témata: | |
| ISSN: | 1860-5974, 1860-5974 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We consider semigroup algorithmic problems in the Special Affine group $\mathsf{SA}(2, \mathbb{Z}) = \mathbb{Z}^2 \rtimes \mathsf{SL}(2, \mathbb{Z})$, which is the group of affine transformations of the lattice $\mathbb{Z}^2$ that preserve orientation. Our paper focuses on two decision problems introduced by Choffrut and Karhum\"{a}ki (2005): the Identity Problem (does a semigroup contain a neutral element?) and the Group Problem (is a semigroup a group?) for finitely generated sub-semigroups of $\mathsf{SA}(2, \mathbb{Z})$. We show that both problems are decidable and NP-complete. Since $\mathsf{SL}(2, \mathbb{Z}) \leq \mathsf{SA}(2, \mathbb{Z}) \leq \mathsf{SL}(3, \mathbb{Z})$, our result extends that of Bell, Hirvensalo and Potapov (2017) on the NP-completeness of both problems in $\mathsf{SL}(2, \mathbb{Z})$, and contributes a first step towards the open problems in $\mathsf{SL}(3, \mathbb{Z})$. |
|---|---|
| AbstractList | We consider semigroup algorithmic problems in the Special Affine group $\mathsf{SA}(2, \mathbb{Z}) = \mathbb{Z}^2 \rtimes \mathsf{SL}(2, \mathbb{Z})$, which is the group of affine transformations of the lattice $\mathbb{Z}^2$ that preserve orientation. Our paper focuses on two decision problems introduced by Choffrut and Karhum\"{a}ki (2005): the Identity Problem (does a semigroup contain a neutral element?) and the Group Problem (is a semigroup a group?) for finitely generated sub-semigroups of $\mathsf{SA}(2, \mathbb{Z})$. We show that both problems are decidable and NP-complete. Since $\mathsf{SL}(2, \mathbb{Z}) \leq \mathsf{SA}(2, \mathbb{Z}) \leq \mathsf{SL}(3, \mathbb{Z})$, our result extends that of Bell, Hirvensalo and Potapov (2017) on the NP-completeness of both problems in $\mathsf{SL}(2, \mathbb{Z})$, and contributes a first step towards the open problems in $\mathsf{SL}(3, \mathbb{Z})$. |
| Author | Dong, Ruiwen |
| Author_xml | – sequence: 1 givenname: Ruiwen surname: Dong fullname: Dong, Ruiwen |
| BookMark | eNpNkDtPwzAUhS1UJErpH2DKwABDwL5-s1UVj0qVYCgLQliOY7ep0rhywlAh_juhRYgz3HN1hm_4TtGgiY1H6JzgayZAq5t649ocyCXcArkCDPwIDYkSOOdassG__wSN23aN-1BKFIghmixWPpuVvumqbpc9p1jUfpNVTdb1e7v1rrJ1ZkOoGp8tU_zYZjFkF28b262K4vP16x3O0HGwdevHvz1CL_d3i-ljPn96mE0n89wRTnlOCiUJDSwQXjpcBkmZpGBtQSnnUGIhJLNKKGq1EtppzzRwoSR3BWdACzpCswO3jHZttqna2LQz0VZmP8S0NDZ1lau9KamjpSIalNMMa6t9kCT4wITHUuLQs-DAcim2bfLhj0ew2Ts1P04NEAP70zul3xwtakA |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.46298/lmcs-21(2:21)2025 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1860-5974 |
| ExternalDocumentID | oai_doaj_org_article_d3c3d81928c9409a9ef71fef46e0770f 10_46298_lmcs_21_2_21_2025 |
| GroupedDBID | .4S .DC 29L 2WC 5GY 5VS AAFWJ AAYXX ADBBV ADMLS ADQAK AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV CITATION EBS EJD FRP GROUPED_DOAJ J9A KQ8 MK~ ML~ M~E OK1 OVT P2P TR2 TUS XSB |
| ID | FETCH-LOGICAL-c1535-1b8713f4f15dc0df734732aab33552d06674a8683a9869c9e49256875cb5423b3 |
| IEDL.DBID | DOA |
| ISSN | 1860-5974 |
| IngestDate | Fri Oct 03 12:53:36 EDT 2025 Sat Nov 29 07:50:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1535-1b8713f4f15dc0df734732aab33552d06674a8683a9869c9e49256875cb5423b3 |
| OpenAccessLink | https://doaj.org/article/d3c3d81928c9409a9ef71fef46e0770f |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d3c3d81928c9409a9ef71fef46e0770f crossref_primary_10_46298_lmcs_21_2_21_2025 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-09 |
| PublicationDateYYYYMMDD | 2025-06-09 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationTitle | Logical methods in computer science |
| PublicationYear | 2025 |
| Publisher | Logical Methods in Computer Science e.V |
| Publisher_xml | – name: Logical Methods in Computer Science e.V |
| SSID | ssj0000331826 |
| Score | 2.3406563 |
| Snippet | We consider semigroup algorithmic problems in the Special Affine group $\mathsf{SA}(2, \mathbb{Z}) = \mathbb{Z}^2 \rtimes \mathsf{SL}(2, \mathbb{Z})$, which is... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| SubjectTerms | computer science - computational complexity computer science - discrete mathematics mathematics - group theory |
| Title | The Identity Problem in the special affine group of $\mathbb{Z}^2 |
| URI | https://doaj.org/article/d3c3d81928c9409a9ef71fef46e0770f |
| Volume | 21, Issue 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1860-5974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331826 issn: 1860-5974 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1860-5974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331826 issn: 1860-5974 databaseCode: M~E dateStart: 20040101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPHjxLdYXOfSgyNJNso_EW5UWD1p6UCgiLnliQbfSVkFEf7uT7FbqyYuXHJbdJXyzO_k-mPkGoZZMY2M405HOQZskUtJIKqO8jWtOiObc6GDiepX3-3w4FIOFUV--JqyyB66AaxummfGuXVwL0CJSWJcTZ12S2TjPY-ezL7CeBTEVcjBjnjhXXTJJRgVvPz3raUTJMT2j5AQkf_rrJFow7A8nS28drdaUEHeqrWygJVtuorX5uAVc_31bqAMhxXVj7TseVJNg8KjEwOHwtJojj6VzwBtxaNbAY4db90BJH5X6uPt8oNvotte9ubiM6gkIkYZMlEZEgZ5hLnEkNTo2LmdJzqiUigFNoMYXqCaSZ5xJwTOhhfVWgxlIEK1S4EmK7aBGOS7tLsLKZowaLqwVCiSx4TEwF8KUk0TDY3ETnc7RKF4qo4sCBELArvDYFZQUNCyAXROde8B-7vQm1eEChK6oQ1f8Fbq9_3jJPlrxGwrVW-IANWaTV3uIlvXbbDSdHIWvAtbrr-43Vj67nA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Identity+Problem+in+the+special+affine+group+of+%24%5Cmathbb%7BZ%7D%5E2&rft.jtitle=Logical+methods+in+computer+science&rft.au=Dong%2C+Ruiwen&rft.date=2025-06-09&rft.issn=1860-5974&rft.eissn=1860-5974&rft.volume=21%2C+Issue+2&rft_id=info:doi/10.46298%2Flmcs-21%282%3A21%292025&rft.externalDBID=n%2Fa&rft.externalDocID=10_46298_lmcs_21_2_21_2025 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon |