text{TT}^{\Box}_{\mathcal C}$: a Family of Extensional Type Theories with Effectful Realizers of Continuity

$\text{TT}^{\Box}_{{\mathcal C}}$ is a generic family of effectful, extensional type theories with a forcing interpretation parameterized by modalities. This paper identifies a subclass of $\text{TT}^{\Box}_{{\mathcal C}}$ theories that internally realizes continuity principles through stateful comp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Logical methods in computer science Ročník 20, Issue 2
Hlavní autoři: Cohen, Liron, Rahli, Vincent
Médium: Journal Article
Jazyk:angličtina
Vydáno: Logical Methods in Computer Science e.V 26.06.2024
Témata:
ISSN:1860-5974, 1860-5974
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:$\text{TT}^{\Box}_{{\mathcal C}}$ is a generic family of effectful, extensional type theories with a forcing interpretation parameterized by modalities. This paper identifies a subclass of $\text{TT}^{\Box}_{{\mathcal C}}$ theories that internally realizes continuity principles through stateful computations, such as reference cells. The principle of continuity is a seminal property that holds for a number of intuitionistic theories such as System T. Roughly speaking, it states that functions on real numbers only need approximations of these numbers to compute. Generally, continuity principles have been justified using semantical arguments, but it is known that the modulus of continuity of functions can be computed using effectful computations such as exceptions or reference cells. In this paper, the modulus of continuity of the functionals on the Baire space is directly computed using the stateful computations enabled internally in the theory.
ISSN:1860-5974
1860-5974
DOI:10.46298/lmcs-20(2:18)2024