Varieties of unary-determined distributive $\ell$-magmas and bunched implication algebras

A distributive lattice-ordered magma ($d\ell$-magma) $(A,\wedge,\vee,\cdot)$ is a distributive lattice with a binary operation $\cdot$ that preserves joins in both arguments, and when $\cdot$ is associative then $(A,\vee,\cdot)$ is an idempotent semiring. A $d\ell$-magma with a top $\top$ is unary-d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Logical methods in computer science Ročník 20, Issue 1
Hlavní autoři: Alpay, Natanael, Jipsen, Peter, Sugimoto, Melissa
Médium: Journal Article
Jazyk:angličtina
Vydáno: Logical Methods in Computer Science e.V 07.02.2024
Témata:
ISSN:1860-5974, 1860-5974
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A distributive lattice-ordered magma ($d\ell$-magma) $(A,\wedge,\vee,\cdot)$ is a distributive lattice with a binary operation $\cdot$ that preserves joins in both arguments, and when $\cdot$ is associative then $(A,\vee,\cdot)$ is an idempotent semiring. A $d\ell$-magma with a top $\top$ is unary-determined if $x{\cdot} y=(x{\cdot}\!\top\wedge y)$ $\vee(x\wedge \top\!{\cdot}y)$. These algebras are term-equivalent to a subvariety of distributive lattices with $\top$ and two join-preserving unary operations $\mathsf p,\mathsf q$. We obtain simple conditions on $\mathsf p,\mathsf q$ such that $x{\cdot} y=(\mathsf px\wedge y)\vee(x\wedge \mathsf qy)$ is associative, commutative, idempotent and/or has an identity element. This generalizes previous results on the structure of doubly idempotent semirings and, in the case when the distributive lattice is a Heyting algebra, it provides structural insight into unary-determined algebraic models of bunched implication logic. We also provide Kripke semantics for the algebras under consideration, which leads to more efficient algorithms for constructing finite models. We find all subdirectly irreducible algebras up to cardinality eight in which $\mathsf p=\mathsf q$ is a closure operator, as well as all finite unary-determined bunched implication chains and map out the poset of join-irreducible varieties generated by them.
AbstractList A distributive lattice-ordered magma ($d\ell$-magma) $(A,\wedge,\vee,\cdot)$ is a distributive lattice with a binary operation $\cdot$ that preserves joins in both arguments, and when $\cdot$ is associative then $(A,\vee,\cdot)$ is an idempotent semiring. A $d\ell$-magma with a top $\top$ is unary-determined if $x{\cdot} y=(x{\cdot}\!\top\wedge y)$ $\vee(x\wedge \top\!{\cdot}y)$. These algebras are term-equivalent to a subvariety of distributive lattices with $\top$ and two join-preserving unary operations $\mathsf p,\mathsf q$. We obtain simple conditions on $\mathsf p,\mathsf q$ such that $x{\cdot} y=(\mathsf px\wedge y)\vee(x\wedge \mathsf qy)$ is associative, commutative, idempotent and/or has an identity element. This generalizes previous results on the structure of doubly idempotent semirings and, in the case when the distributive lattice is a Heyting algebra, it provides structural insight into unary-determined algebraic models of bunched implication logic. We also provide Kripke semantics for the algebras under consideration, which leads to more efficient algorithms for constructing finite models. We find all subdirectly irreducible algebras up to cardinality eight in which $\mathsf p=\mathsf q$ is a closure operator, as well as all finite unary-determined bunched implication chains and map out the poset of join-irreducible varieties generated by them.
A distributive lattice-ordered magma ($d\ell$-magma) $(A,\wedge,\vee,\cdot)$ is a distributive lattice with a binary operation $\cdot$ that preserves joins in both arguments, and when $\cdot$ is associative then $(A,\vee,\cdot)$ is an idempotent semiring. A $d\ell$-magma with a top $\top$ is unary-determined if $x{\cdot} y=(x{\cdot}\!\top\wedge y)$ $\vee(x\wedge \top\!{\cdot}y)$. These algebras are term-equivalent to a subvariety of distributive lattices with $\top$ and two join-preserving unary operations $\mathsf p,\mathsf q$. We obtain simple conditions on $\mathsf p,\mathsf q$ such that $x{\cdot} y=(\mathsf px\wedge y)\vee(x\wedge \mathsf qy)$ is associative, commutative, idempotent and/or has an identity element. This generalizes previous results on the structure of doubly idempotent semirings and, in the case when the distributive lattice is a Heyting algebra, it provides structural insight into unary-determined algebraic models of bunched implication logic. We also provide Kripke semantics for the algebras under consideration, which leads to more efficient algorithms for constructing finite models. We find all subdirectly irreducible algebras up to cardinality eight in which $\mathsf p=\mathsf q$ is a closure operator, as well as all finite unary-determined bunched implication chains and map out the poset of join-irreducible varieties generated by them.
Author Sugimoto, Melissa
Jipsen, Peter
Alpay, Natanael
Author_xml – sequence: 1
  givenname: Natanael
  surname: Alpay
  fullname: Alpay, Natanael
– sequence: 2
  givenname: Peter
  surname: Jipsen
  fullname: Jipsen, Peter
– sequence: 3
  givenname: Melissa
  surname: Sugimoto
  fullname: Sugimoto, Melissa
BookMark eNpNkE1LAzEQhoNUsNb-AU976EEPq_na7MablKqFghcVBCHMTrI1ZT9KshX8925bEecyw8vLA_Ock1HbtY6QS0ZvpOK6uK0bjCmnV-yO8WtOuTwhY1YommY6l6N_9xmZxrihwwjBCq7G5P0Ngne9dzHpqmTXQvhOretdaHzrbGJ97IMvd73_csnsw9X1LG1g3UBMoLVJuWvxc6j5Zlt7hN53bQL12pUB4gU5raCObvq7J-T1YfEyf0pXz4_L-f0qRZYJmeaFZJg5VTFVguZFWWgBnOdILQfNCpE5iSj3LeVkrsAKFBUVvGIyg8yKCVkeubaDjdkG3ww_mA68OQRdWBsIvcfaGcsRlMRc6lJLWVGtGQoFVGi0KEQ5sPiRhaGLMbjqj8eoObg2e9eGU8MM42bvWvwA60B03Q
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.46298/lmcs-20(1:12)2024
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-5974
ExternalDocumentID oai_doaj_org_article_d2ca64c749b944f0991c36a039cdc33b
10_46298_lmcs_20_1_12_2024
GroupedDBID .4S
.DC
29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADMLS
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
MK~
ML~
M~E
OK1
OVT
P2P
TR2
TUS
XSB
ID FETCH-LOGICAL-c1534-7841c5e6f16ba928b893a227c0d2a91835e4cc4841c6e476ad3c3f032f145a5d3
IEDL.DBID DOA
ISSN 1860-5974
IngestDate Fri Oct 03 12:50:14 EDT 2025
Sat Nov 29 06:21:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1534-7841c5e6f16ba928b893a227c0d2a91835e4cc4841c6e476ad3c3f032f145a5d3
OpenAccessLink https://doaj.org/article/d2ca64c749b944f0991c36a039cdc33b
ParticipantIDs doaj_primary_oai_doaj_org_article_d2ca64c749b944f0991c36a039cdc33b
crossref_primary_10_46298_lmcs_20_1_12_2024
PublicationCentury 2000
PublicationDate 2024-02-07
PublicationDateYYYYMMDD 2024-02-07
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-07
  day: 07
PublicationDecade 2020
PublicationTitle Logical methods in computer science
PublicationYear 2024
Publisher Logical Methods in Computer Science e.V
Publisher_xml – name: Logical Methods in Computer Science e.V
SSID ssj0000331826
Score 2.2948372
Snippet A distributive lattice-ordered magma ($d\ell$-magma) $(A,\wedge,\vee,\cdot)$ is a distributive lattice with a binary operation $\cdot$ that preserves joins in...
A distributive lattice-ordered magma ($d\ell$-magma) $(A,\wedge,\vee,\cdot)$ is a distributive lattice with a binary operation $\cdot$ that preserves joins in...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms mathematics - logic
mathematics - rings and algebras
Title Varieties of unary-determined distributive $\ell$-magmas and bunched implication algebras
URI https://doaj.org/article/d2ca64c749b944f0991c36a039cdc33b
Volume 20, Issue 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1Fe8tABhKwm9uVhNkBFDFAxACoSUuQnVOoDNW1Hfju2k0KZWFgyRJfI-s65-045f4dQSyZgIFGCZBoYAWMkETymRGXAmQRIIh3U9e-ybjfv9fjD0qgv3xNWyQNXwLU1VSIF_6jkANYRmlixVESMK60Ykz76OtazVEyFGMyYJ87VKRlIKc_bg6Eq3Z44jS9ieuZKfviViZYE-0NmudlE6zUlxJfVUrbQihlto43FuAVcf3076OXZ17VeABWPLZ75c7RE190sRmPtJXDD9Kq5wa1XMxi0yFC8DUWJxUhj6RLYuzPr_7SQYz_jw1XL5S56uuk8Xt-SejICUS5CAfE_C1ViUhunUnCaS8c6BKWZijR1UDtWZUAp8FapgSwVmilmI0ZtDIlINNtDjdF4ZPYRFrlwpEoaa8ECE1raNKKCRZxSJW0UNdH5AqXioxLAKFzhEDAtPKYFdWVEEdPCY9pEVx7Ib0svXh1uOJcWtUuLv1x68B8vOURrfkGhwTo7Qo3pZGaO0aqaT_vl5CTsFne9_-x8AQMBxiI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Varieties+of+unary-determined+distributive+%24%5Cell%24-magmas+and+bunched+implication+algebras&rft.jtitle=Logical+methods+in+computer+science&rft.au=Natanael+Alpay&rft.au=Peter+Jipsen&rft.au=Melissa+Sugimoto&rft.date=2024-02-07&rft.pub=Logical+Methods+in+Computer+Science+e.V&rft.eissn=1860-5974&rft.volume=20%2C+Issue+1&rft_id=info:doi/10.46298%2Flmcs-20%281%3A12%292024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d2ca64c749b944f0991c36a039cdc33b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon