Varieties of unary-determined distributive $\ell$-magmas and bunched implication algebras
A distributive lattice-ordered magma ($d\ell$-magma) $(A,\wedge,\vee,\cdot)$ is a distributive lattice with a binary operation $\cdot$ that preserves joins in both arguments, and when $\cdot$ is associative then $(A,\vee,\cdot)$ is an idempotent semiring. A $d\ell$-magma with a top $\top$ is unary-d...
Uloženo v:
| Vydáno v: | Logical methods in computer science Ročník 20, Issue 1 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Logical Methods in Computer Science e.V
07.02.2024
|
| Témata: | |
| ISSN: | 1860-5974, 1860-5974 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A distributive lattice-ordered magma ($d\ell$-magma) $(A,\wedge,\vee,\cdot)$
is a distributive lattice with a binary operation $\cdot$ that preserves joins
in both arguments, and when $\cdot$ is associative then $(A,\vee,\cdot)$ is an
idempotent semiring. A $d\ell$-magma with a top $\top$ is unary-determined if
$x{\cdot} y=(x{\cdot}\!\top\wedge y)$ $\vee(x\wedge \top\!{\cdot}y)$. These
algebras are term-equivalent to a subvariety of distributive lattices with
$\top$ and two join-preserving unary operations $\mathsf p,\mathsf q$. We
obtain simple conditions on $\mathsf p,\mathsf q$ such that $x{\cdot}
y=(\mathsf px\wedge y)\vee(x\wedge \mathsf qy)$ is associative, commutative,
idempotent and/or has an identity element.
This generalizes previous results on the structure of doubly idempotent
semirings and, in the case when the distributive lattice is a Heyting algebra,
it provides structural insight into unary-determined algebraic models of
bunched implication logic. We also provide Kripke semantics for the algebras
under consideration, which leads to more efficient algorithms for constructing
finite models. We find all subdirectly irreducible algebras up to cardinality
eight in which $\mathsf p=\mathsf q$ is a closure operator, as well as all
finite unary-determined bunched implication chains and map out the poset of
join-irreducible varieties generated by them. |
|---|---|
| AbstractList | A distributive lattice-ordered magma ($d\ell$-magma) $(A,\wedge,\vee,\cdot)$
is a distributive lattice with a binary operation $\cdot$ that preserves joins
in both arguments, and when $\cdot$ is associative then $(A,\vee,\cdot)$ is an
idempotent semiring. A $d\ell$-magma with a top $\top$ is unary-determined if
$x{\cdot} y=(x{\cdot}\!\top\wedge y)$ $\vee(x\wedge \top\!{\cdot}y)$. These
algebras are term-equivalent to a subvariety of distributive lattices with
$\top$ and two join-preserving unary operations $\mathsf p,\mathsf q$. We
obtain simple conditions on $\mathsf p,\mathsf q$ such that $x{\cdot}
y=(\mathsf px\wedge y)\vee(x\wedge \mathsf qy)$ is associative, commutative,
idempotent and/or has an identity element.
This generalizes previous results on the structure of doubly idempotent
semirings and, in the case when the distributive lattice is a Heyting algebra,
it provides structural insight into unary-determined algebraic models of
bunched implication logic. We also provide Kripke semantics for the algebras
under consideration, which leads to more efficient algorithms for constructing
finite models. We find all subdirectly irreducible algebras up to cardinality
eight in which $\mathsf p=\mathsf q$ is a closure operator, as well as all
finite unary-determined bunched implication chains and map out the poset of
join-irreducible varieties generated by them. A distributive lattice-ordered magma ($d\ell$-magma) $(A,\wedge,\vee,\cdot)$ is a distributive lattice with a binary operation $\cdot$ that preserves joins in both arguments, and when $\cdot$ is associative then $(A,\vee,\cdot)$ is an idempotent semiring. A $d\ell$-magma with a top $\top$ is unary-determined if $x{\cdot} y=(x{\cdot}\!\top\wedge y)$ $\vee(x\wedge \top\!{\cdot}y)$. These algebras are term-equivalent to a subvariety of distributive lattices with $\top$ and two join-preserving unary operations $\mathsf p,\mathsf q$. We obtain simple conditions on $\mathsf p,\mathsf q$ such that $x{\cdot} y=(\mathsf px\wedge y)\vee(x\wedge \mathsf qy)$ is associative, commutative, idempotent and/or has an identity element. This generalizes previous results on the structure of doubly idempotent semirings and, in the case when the distributive lattice is a Heyting algebra, it provides structural insight into unary-determined algebraic models of bunched implication logic. We also provide Kripke semantics for the algebras under consideration, which leads to more efficient algorithms for constructing finite models. We find all subdirectly irreducible algebras up to cardinality eight in which $\mathsf p=\mathsf q$ is a closure operator, as well as all finite unary-determined bunched implication chains and map out the poset of join-irreducible varieties generated by them. |
| Author | Sugimoto, Melissa Jipsen, Peter Alpay, Natanael |
| Author_xml | – sequence: 1 givenname: Natanael surname: Alpay fullname: Alpay, Natanael – sequence: 2 givenname: Peter surname: Jipsen fullname: Jipsen, Peter – sequence: 3 givenname: Melissa surname: Sugimoto fullname: Sugimoto, Melissa |
| BookMark | eNpNkE1LAzEQhoNUsNb-AU976EEPq_na7MablKqFghcVBCHMTrI1ZT9KshX8925bEecyw8vLA_Ock1HbtY6QS0ZvpOK6uK0bjCmnV-yO8WtOuTwhY1YommY6l6N_9xmZxrihwwjBCq7G5P0Ngne9dzHpqmTXQvhOretdaHzrbGJ97IMvd73_csnsw9X1LG1g3UBMoLVJuWvxc6j5Zlt7hN53bQL12pUB4gU5raCObvq7J-T1YfEyf0pXz4_L-f0qRZYJmeaFZJg5VTFVguZFWWgBnOdILQfNCpE5iSj3LeVkrsAKFBUVvGIyg8yKCVkeubaDjdkG3ww_mA68OQRdWBsIvcfaGcsRlMRc6lJLWVGtGQoFVGi0KEQ5sPiRhaGLMbjqj8eoObg2e9eGU8MM42bvWvwA60B03Q |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.46298/lmcs-20(1:12)2024 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1860-5974 |
| ExternalDocumentID | oai_doaj_org_article_d2ca64c749b944f0991c36a039cdc33b 10_46298_lmcs_20_1_12_2024 |
| GroupedDBID | .4S .DC 29L 2WC 5GY 5VS AAFWJ AAYXX ADBBV ADMLS ADQAK AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV CITATION EBS EJD FRP GROUPED_DOAJ J9A KQ8 MK~ ML~ M~E OK1 OVT P2P TR2 TUS XSB |
| ID | FETCH-LOGICAL-c1534-7841c5e6f16ba928b893a227c0d2a91835e4cc4841c6e476ad3c3f032f145a5d3 |
| IEDL.DBID | DOA |
| ISSN | 1860-5974 |
| IngestDate | Fri Oct 03 12:50:14 EDT 2025 Sat Nov 29 06:21:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1534-7841c5e6f16ba928b893a227c0d2a91835e4cc4841c6e476ad3c3f032f145a5d3 |
| OpenAccessLink | https://doaj.org/article/d2ca64c749b944f0991c36a039cdc33b |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d2ca64c749b944f0991c36a039cdc33b crossref_primary_10_46298_lmcs_20_1_12_2024 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-07 |
| PublicationDateYYYYMMDD | 2024-02-07 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | Logical methods in computer science |
| PublicationYear | 2024 |
| Publisher | Logical Methods in Computer Science e.V |
| Publisher_xml | – name: Logical Methods in Computer Science e.V |
| SSID | ssj0000331826 |
| Score | 2.2948372 |
| Snippet | A distributive lattice-ordered magma ($d\ell$-magma) $(A,\wedge,\vee,\cdot)$
is a distributive lattice with a binary operation $\cdot$ that preserves joins
in... A distributive lattice-ordered magma ($d\ell$-magma) $(A,\wedge,\vee,\cdot)$ is a distributive lattice with a binary operation $\cdot$ that preserves joins in... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| SubjectTerms | mathematics - logic mathematics - rings and algebras |
| Title | Varieties of unary-determined distributive $\ell$-magmas and bunched implication algebras |
| URI | https://doaj.org/article/d2ca64c749b944f0991c36a039cdc33b |
| Volume | 20, Issue 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1860-5974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331826 issn: 1860-5974 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1860-5974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331826 issn: 1860-5974 databaseCode: M~E dateStart: 20040101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1Fe8tABhKwm9uVhNkBFDFAxACoSUuQnVOoDNW1Hfju2k0KZWFgyRJfI-s65-045f4dQSyZgIFGCZBoYAWMkETymRGXAmQRIIh3U9e-ybjfv9fjD0qgv3xNWyQNXwLU1VSIF_6jkANYRmlixVESMK60Ykz76OtazVEyFGMyYJ87VKRlIKc_bg6Eq3Z44jS9ieuZKfviViZYE-0NmudlE6zUlxJfVUrbQihlto43FuAVcf3076OXZ17VeABWPLZ75c7RE190sRmPtJXDD9Kq5wa1XMxi0yFC8DUWJxUhj6RLYuzPr_7SQYz_jw1XL5S56uuk8Xt-SejICUS5CAfE_C1ViUhunUnCaS8c6BKWZijR1UDtWZUAp8FapgSwVmilmI0ZtDIlINNtDjdF4ZPYRFrlwpEoaa8ECE1raNKKCRZxSJW0UNdH5AqXioxLAKFzhEDAtPKYFdWVEEdPCY9pEVx7Ib0svXh1uOJcWtUuLv1x68B8vOURrfkGhwTo7Qo3pZGaO0aqaT_vl5CTsFne9_-x8AQMBxiI |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Varieties+of+unary-determined+distributive+%24%5Cell%24-magmas+and+bunched+implication+algebras&rft.jtitle=Logical+methods+in+computer+science&rft.au=Natanael+Alpay&rft.au=Peter+Jipsen&rft.au=Melissa+Sugimoto&rft.date=2024-02-07&rft.pub=Logical+Methods+in+Computer+Science+e.V&rft.eissn=1860-5974&rft.volume=20%2C+Issue+1&rft_id=info:doi/10.46298%2Flmcs-20%281%3A12%292024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d2ca64c749b944f0991c36a039cdc33b |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon |