Label propagation based on local information with adaptive determination of number and degree of neighbor׳s similarity

In many practical applications of machine vision, a small number of samples are labeled and therefore, classification accuracy is low. On the other hand, labeling by humans is a very time consuming process, which requires a degree of proficiency. Semi-supervised learning algorithms may be used as a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 153; s. 41 - 53
Hlavní autoři: Saffari, Seyed Alireza, Ebrahimi-Moghadam, Abbas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 04.04.2015
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In many practical applications of machine vision, a small number of samples are labeled and therefore, classification accuracy is low. On the other hand, labeling by humans is a very time consuming process, which requires a degree of proficiency. Semi-supervised learning algorithms may be used as a proper solution in these situations, where ε-neighborhood or k nearest neighborhood graphs are employed to build a similarity graph. These graphs, on one hand, have a high degree of sensitivity to noise. On the other hand, optimal determination of ε and k parameters is a complex task. In some classification algorithms, sparse representation (SR) is employed in order to overcome these obstacles. Although SR has its own advantages, SR theory in its coding stage does not reflect local information and it requires a time consuming and heavy optimization process. Locality-constrained Linear Coding (LLC) addresses these problems and regards the local information in the coding process. In this paper we examine the effectiveness of using local information in form of label propagation algorithm and present three new label propagation modifications. Experimental results on three UCI datasets, two face databases and a biometric database show that our proposed algorithms have higher classification rates compared to other competitive algorithms.
AbstractList In many practical applications of machine vision, a small number of samples are labeled and therefore, classification accuracy is low. On the other hand, labeling by humans is a very time consuming process, which requires a degree of proficiency. Semi-supervised learning algorithms may be used as a proper solution in these situations, where ε-neighborhood or k nearest neighborhood graphs are employed to build a similarity graph. These graphs, on one hand, have a high degree of sensitivity to noise. On the other hand, optimal determination of ε and k parameters is a complex task. In some classification algorithms, sparse representation (SR) is employed in order to overcome these obstacles. Although SR has its own advantages, SR theory in its coding stage does not reflect local information and it requires a time consuming and heavy optimization process. Locality-constrained Linear Coding (LLC) addresses these problems and regards the local information in the coding process. In this paper we examine the effectiveness of using local information in form of label propagation algorithm and present three new label propagation modifications. Experimental results on three UCI datasets, two face databases and a biometric database show that our proposed algorithms have higher classification rates compared to other competitive algorithms.
Author Ebrahimi-Moghadam, Abbas
Saffari, Seyed Alireza
Author_xml – sequence: 1
  givenname: Seyed Alireza
  surname: Saffari
  fullname: Saffari, Seyed Alireza
  email: arsaffari@yahoo.com
– sequence: 2
  givenname: Abbas
  surname: Ebrahimi-Moghadam
  fullname: Ebrahimi-Moghadam, Abbas
BookMark eNqFkEtOxDAMhiMEEsPjBixygZY4fbNAQoiXNBIbWEdu4g4Ztcko6QziXByG61AoKxawsuVfn2V_R2zfeUeMnYFIQUB5vk4dbbUfUikgTwFSUWR7bAF1JZNa1uU-W4hGFonMQB6yoxjXQkAFslmw1yW21PNN8Btc4Wi94y1GMnxqeq-x59Z1Pgxz9GrHF44GN6PdETc0UhismzPfcbcdWgocnZmyVSD6HpJdvbQ-fLxHHu1gewx2fDthBx32kU5_6jF7vr15ur5Plo93D9dXy0RDAVmCucGqNY1uOlnlNVXQCg1Sl5XIpTR1UdWlKXMA3WiEpsixbBqsMOuMKLGj7JhdzHt18DEG6pS24_fBY0DbKxDqS6Faq1mh-lKoANSkcILzX_Am2AHD23_Y5YzR9NjOUlBRW3KajA2kR2W8_XvBJ7Uck0Y
CitedBy_id crossref_primary_10_1016_j_neucom_2016_09_090
crossref_primary_10_1089_cmb_2023_0084
crossref_primary_10_1016_j_eswa_2024_123302
crossref_primary_10_1111_jcmm_13799
crossref_primary_10_3389_fgene_2018_00576
crossref_primary_10_1016_j_ygeno_2019_08_001
Cites_doi 10.1109/TSMCC.2009.2020790
10.1109/TIT.2004.834793
10.1016/j.patcog.2011.12.004
10.1016/j.neucom.2011.08.018
10.1109/34.927464
10.1016/j.patcog.2011.02.013
10.1109/72.914517
10.1109/TPAMI.2008.216
10.1126/science.290.5500.2319
10.1080/10556780108805809
10.1109/JPROC.2010.2044470
10.1145/342009.335388
10.1137/1.9781611972825.74
10.1137/S003614450037906X
10.1016/j.neucom.2012.03.017
10.1126/science.290.5500.2323
10.1016/j.neucom.2014.02.022
10.1016/j.neucom.2012.08.070
10.1137/080714488
10.1109/JSTSP.2007.910971
10.1109/JPROC.2009.2037655
10.1109/TKDE.2007.190672
10.1109/ACVMOT.2005.107
10.1109/CVPR.2006.272
10.1109/TIP.2009.2038764
10.1109/TPAMI.2008.79
10.1016/j.patcog.2008.01.001
10.1109/ACV.1994.341300
10.1109/TPAMI.2003.1240123
10.1016/j.sigpro.2012.09.011
10.1016/j.neucom.2012.06.018
10.1016/S0304-3975(97)00115-1
10.1109/ICIP.2011.6116666
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2014.11.053
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 53
ExternalDocumentID 10_1016_j_neucom_2014_11_053
S0925231214016476
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c1513-a4da7bd9c9f2748e71b0c12c670422d85786d6411c9ca1954a699a7a3fd06afe3
ISSN 0925-2312
IngestDate Tue Nov 18 20:38:48 EST 2025
Sat Nov 29 07:57:01 EST 2025
Fri Feb 23 02:28:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Semi-supervised learning algorithms
Sparse representation
Local information
Graph-based algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1513-a4da7bd9c9f2748e71b0c12c670422d85786d6411c9ca1954a699a7a3fd06afe3
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2014_11_053
crossref_primary_10_1016_j_neucom_2014_11_053
elsevier_sciencedirect_doi_10_1016_j_neucom_2014_11_053
PublicationCentury 2000
PublicationDate 2015-04-04
PublicationDateYYYYMMDD 2015-04-04
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-04
  day: 04
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chapelle O., Weston J., Scholkopf B., Cluster kernels for semi-supervised learning, in: Proceedings of the Neural Information Processing Systems Conference, 15, pp. 585–592, 2003.
Fujino, Ueda, Saito (bib3) 2005
Zang, Zhang (bib44) 2012; 97
Bengio, Alleau, Le Roux (bib19) 2006
Yan, Wang (bib49) 2009
Yin, Liu, Jin, Yang (bib30) 2012; 77
Kim, Koh, Lustig, Boyd, Gorinevsky (bib52) 2007; 1
Joachims (bib12) 2003
Cheng, Yang, Yan, Fu, Huang (bib24) 2010; 19
Roweis, Saul (bib34) 2000; 290
T. Joachims, Transductive inference for text classification using support vector machines, in: Proceedings of the 16th International Conference Machine Learning, 1999
Zhang, Lu, Li, Zhang, Luo (bib48) 2009; 39
Turk, Pentland (bib50) 1991
Chen, Donoho, Saunders (bib41) 2001; 43
D. Needell, J.A. Tropp, R. Vershynin, Greedy signal recovery review, in: Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, pp. 1048–1050, 2008.
Georghiades, Belhumeur, Kriegman (bib47) 2001; 23
uller, Mike, atsch, Tsuda, olkopf (bib53) 2001; 12
Xu, Yang (bib31) 2013; 99
Elad, Figueiredo, Ma (bib21) 2010; 98
Sun, Shawe-Taylor (bib26) 2010; 11
Wright, Yang, Ganesh, Sastry, Ma (bib29) 2009; 31
Berg, Friedlander (bib51) 2008; 31
Wang, Wang, Zhang, Shen, Quan (bib17) 2009; 31
Cheng, Liu, Yang, Chen (bib23) 2013; 93
Blum, Chawla (bib14) 2001
Wright, Ma, Mairal, Sapiro, Huang, Yan (bib22) 2010; 98
Belkin, Niyogi, Sindhwani (bib7) 2006; 7
Tropp (bib43) 2004; 50
Zhou, Bousquet, Lal, Weston, Scho¨lkopf (bib15) 2003; 16
Elgammal, Duraiswami, Davis (bib36) 2003; 25
C. Blake, C. Merz, UCI Repository of Machine Learning Databases, 1998.
Y.-W. Chao, Y.-R. Yeh, Y.-W. Chen, Y.-J. Lee, Y.-C.F. Wang, Locality-constrained group sparse representation for robust face recognition, in: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 761–764, 2011.
Song, Nie, Zhang, Xiang (bib8) 2008; 41
F.S. Samaria, A.C. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 138–142, 1994.
Lawrence, Jordan (bib10) 2005
Wang, Zhang (bib18) 2008; 20
Amaldi, Kann (bib40) 1998; 209
Tenenbaum, de Silva, Langford (bib35) 2000; 290
C. Rosenberg, M. Hebert, H. Schneiderman, Semi-Supervised self-training of object detection models, in: Proceedings of the Seventh IEEE Workshops Application of Computer Vision, pp. 29–36, 2005.
J.Wang, J. Yang, K. Yu, F. Lv, T. Huang, Y. Gong, Locality-constrained linear coding for image classification, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3360–3367, 2010.
Blum, Mitchell (bib2) 1998
Bai, Li (bib32) 2012; 45
Yu, Zhang, Gong (bib38) 2009; 22
Tian, Kuang (bib20) 2012
Fan, Gu, Qiao (bib27) 2011; 44
C. Rosenberg, M. Hebert, H. Schneiderman, Semi-supervised self-training of object detection models, in: Proceedings of the 7th Workshop on Applications of Computer Vision, 1, pp. 29–36, 2005.
F. Wang, J.D. Wang, C.S. Zhang, H.C. Shen, Supervised classification using linear neighborhood propagation, IEEE Conference on CVPR׳06, 1, pp. 160–167, 2006.
Fung, Mangasarian (bib5) 2001; 15
Sun, Hussain, Shawe-Taylor (bib25) 2013; 124
Belkin, Niyogi, Sindhwani (bib13) 2005
M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp. 93–104, 2000.
Gu, Wang, Fan, Meng (bib28) 2014; 139
Zhu, Ghahramani, Lafferty (bib1) 2003
Tropp (10.1016/j.neucom.2014.11.053_bib43) 2004; 50
Bengio (10.1016/j.neucom.2014.11.053_bib19) 2006
10.1016/j.neucom.2014.11.053_bib33
Elgammal (10.1016/j.neucom.2014.11.053_bib36) 2003; 25
Blum (10.1016/j.neucom.2014.11.053_bib2) 1998
Wang (10.1016/j.neucom.2014.11.053_bib18) 2008; 20
Zang (10.1016/j.neucom.2014.11.053_bib44) 2012; 97
Georghiades (10.1016/j.neucom.2014.11.053_bib47) 2001; 23
Blum (10.1016/j.neucom.2014.11.053_bib14) 2001
Kim (10.1016/j.neucom.2014.11.053_bib52) 2007; 1
Zhu (10.1016/j.neucom.2014.11.053_bib1) 2003
10.1016/j.neucom.2014.11.053_bib4
10.1016/j.neucom.2014.11.053_bib6
Yan (10.1016/j.neucom.2014.11.053_bib49) 2009
10.1016/j.neucom.2014.11.053_bib9
Sun (10.1016/j.neucom.2014.11.053_bib25) 2013; 124
10.1016/j.neucom.2014.11.053_bib45
Yu (10.1016/j.neucom.2014.11.053_bib38) 2009; 22
10.1016/j.neucom.2014.11.053_bib42
Elad (10.1016/j.neucom.2014.11.053_bib21) 2010; 98
Chen (10.1016/j.neucom.2014.11.053_bib41) 2001; 43
uller (10.1016/j.neucom.2014.11.053_bib53) 2001; 12
Turk (10.1016/j.neucom.2014.11.053_bib50) 1991
10.1016/j.neucom.2014.11.053_bib37
Bai (10.1016/j.neucom.2014.11.053_bib32) 2012; 45
Yin (10.1016/j.neucom.2014.11.053_bib30) 2012; 77
10.1016/j.neucom.2014.11.053_bib39
Fan (10.1016/j.neucom.2014.11.053_bib27) 2011; 44
Lawrence (10.1016/j.neucom.2014.11.053_bib10) 2005
10.1016/j.neucom.2014.11.053_bib11
Tenenbaum (10.1016/j.neucom.2014.11.053_bib35) 2000; 290
Cheng (10.1016/j.neucom.2014.11.053_bib24) 2010; 19
Roweis (10.1016/j.neucom.2014.11.053_bib34) 2000; 290
Song (10.1016/j.neucom.2014.11.053_bib8) 2008; 41
Joachims (10.1016/j.neucom.2014.11.053_bib12) 2003
Sun (10.1016/j.neucom.2014.11.053_bib26) 2010; 11
Zhang (10.1016/j.neucom.2014.11.053_bib48) 2009; 39
Berg (10.1016/j.neucom.2014.11.053_bib51) 2008; 31
Zhou (10.1016/j.neucom.2014.11.053_bib15) 2003; 16
10.1016/j.neucom.2014.11.053_bib46
Xu (10.1016/j.neucom.2014.11.053_bib31) 2013; 99
Tian (10.1016/j.neucom.2014.11.053_bib20) 2012
Fujino (10.1016/j.neucom.2014.11.053_bib3) 2005
Fung (10.1016/j.neucom.2014.11.053_bib5) 2001; 15
Cheng (10.1016/j.neucom.2014.11.053_bib23) 2013; 93
Wang (10.1016/j.neucom.2014.11.053_bib17) 2009; 31
Wright (10.1016/j.neucom.2014.11.053_bib29) 2009; 31
Belkin (10.1016/j.neucom.2014.11.053_bib7) 2006; 7
Belkin (10.1016/j.neucom.2014.11.053_bib13) 2005
10.1016/j.neucom.2014.11.053_bib16
Amaldi (10.1016/j.neucom.2014.11.053_bib40) 1998; 209
Gu (10.1016/j.neucom.2014.11.053_bib28) 2014; 139
Wright (10.1016/j.neucom.2014.11.053_bib22) 2010; 98
References_xml – start-page: 792
  year: 2009
  end-page: 801
  ident: bib49
  article-title: Semi-supervised learning by sparse representation
  publication-title: Proc. SIAM Int. Conf. Data Min. (SDM)
– reference: C. Blake, C. Merz, UCI Repository of Machine Learning Databases, 1998.
– volume: 12
  start-page: 181
  year: 2001
  end-page: 201
  ident: bib53
  article-title: An introduction to kernel-based learning algorithms
  publication-title: IEEE Trans. Neural Netw.
– volume: 50
  start-page: 2231
  year: 2004
  end-page: 2242
  ident: bib43
  article-title: Greed is good: algorithmic results for sparse approximation
  publication-title: IEEE Trans. Inf. Theory
– volume: 41
  start-page: 2789
  year: 2008
  end-page: 2799
  ident: bib8
  article-title: A unified framework for semi-supervised dimensionality reduction
  publication-title: Pattern Recognit.
– reference: Chapelle O., Weston J., Scholkopf B., Cluster kernels for semi-supervised learning, in: Proceedings of the Neural Information Processing Systems Conference, 15, pp. 585–592, 2003.
– volume: 15
  start-page: 29
  year: 2001
  end-page: 44
  ident: bib5
  article-title: Semi-supervised support vector machines for unlabeled data classification
  publication-title: Optim. Methods Software
– volume: 19
  start-page: 858
  year: 2010
  end-page: 866
  ident: bib24
  article-title: Learning with L1-graph for image analysis
  publication-title: IEEE Trans. Image Process. (TIP)
– volume: 22
  start-page: 2223
  year: 2009
  end-page: 2231
  ident: bib38
  article-title: Nonlinear learning using local coordinate coding
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 124
  start-page: 13
  year: 2013
  end-page: 21
  ident: bib25
  article-title: Manifold-preserving graph reduction for sparse semi-supervised learning
  publication-title: Neurocomputing
– volume: 20
  start-page: 55
  year: 2008
  end-page: 67
  ident: bib18
  article-title: Label propagation through linear neighborhoods
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: Y.-W. Chao, Y.-R. Yeh, Y.-W. Chen, Y.-J. Lee, Y.-C.F. Wang, Locality-constrained group sparse representation for robust face recognition, in: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 761–764, 2011.
– start-page: 17
  year: 2005
  end-page: 24
  ident: bib13
  article-title: On manifold regularization
  publication-title: Proc. 10th Int. Worksh. Artif. Intell. Stat.
– start-page: 863
  year: 2012
  end-page: 872
  ident: bib20
  article-title: Global linear neighborhood for efficient label propagation
  publication-title: Proc. SIAM Int. Conf. Data Min. (SDM)
– volume: 93
  start-page: 1408
  year: 2013
  end-page: 1425
  ident: bib23
  article-title: Sparse representation and learning in visual recognition: Theory and applications
  publication-title: Signal Process.
– reference: J.Wang, J. Yang, K. Yu, F. Lv, T. Huang, Y. Gong, Locality-constrained linear coding for image classification, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3360–3367, 2010.
– volume: 98
  start-page: 972
  year: 2010
  end-page: 982
  ident: bib21
  article-title: On the role of sparse and redundant representations in image processing
  publication-title: Proc. IEEE
– volume: 290
  start-page: 2323
  year: 2000
  end-page: 2326
  ident: bib34
  article-title: Nonlinear dimensionality analysis by locally linear embedding
  publication-title: Science
– volume: 25
  start-page: 1499
  year: 2003
  end-page: 1504
  ident: bib36
  article-title: Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 98
  start-page: 1031
  year: 2010
  end-page: 1044
  ident: bib22
  article-title: Sparse recognition for computer vision and pattern recognition
  publication-title: Proc. IEEE
– volume: 44
  start-page: 1777
  year: 2011
  end-page: 1784
  ident: bib27
  article-title: Sparse regularization for semi-supervised classification
  publication-title: Pattern Recognit.
– start-page: 912
  year: 2003
  end-page: 919
  ident: bib1
  article-title: Semi-supervised learning using gaussian fields and harmonic functions
  publication-title: Proc. 20th Int. Conf. Mach. Learn.
– start-page: 290
  year: 2003
  end-page: 297
  ident: bib12
  article-title: Transductive learning via spectral graph partitioning
  publication-title: Proc. 20th Intl. Conf. Mach. Learn.
– start-page: 19
  year: 2001
  end-page: 26
  ident: bib14
  article-title: Learning from labeled and unlabeled data using graph mincuts
  publication-title: ICML
– reference: C. Rosenberg, M. Hebert, H. Schneiderman, Semi-supervised self-training of object detection models, in: Proceedings of the 7th Workshop on Applications of Computer Vision, 1, pp. 29–36, 2005.
– volume: 97
  start-page: 267
  year: 2012
  end-page: 277
  ident: bib44
  article-title: Label propagation through sparse neighborhood and its applications
  publication-title: Neurocomputing
– volume: 16
  year: 2003
  ident: bib15
  article-title: Learning with local and global consistency
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 31
  start-page: 210
  year: 2009
  end-page: 227
  ident: bib29
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 1
  start-page: 606
  year: 2007
  end-page: 617
  ident: bib52
  article-title: A method for large-scale ℓ1-regularized least squares problems with applications in signal processing and statistics
  publication-title: IEEE J. Sel. Top. Signal Process
– volume: 31
  start-page: 890
  year: 2008
  end-page: 912
  ident: bib51
  article-title: Probing the Pareto frontier for basis pursuit solutions
  publication-title: SIAM J. Sci. Comput.
– reference: T. Joachims, Transductive inference for text classification using support vector machines, in: Proceedings of the 16th International Conference Machine Learning, 1999
– start-page: 753
  year: 2005
  end-page: 760
  ident: bib10
  article-title: Semi-supervised learning via gaussian processes
  publication-title: Proc. Neural Inf. Process. Syst. Conf.
– start-page: 92
  year: 1998
  end-page: 100
  ident: bib2
  article-title: Combining labeled and unlabeled data with Co-Training
  publication-title: Proc. 11th Ann. Conf. Learn. Theory
– start-page: 586
  year: 1991
  end-page: 591
  ident: bib50
  article-title: Face Recognition Using Eigenfaces
  publication-title: IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 209
  start-page: 237
  year: 1998
  end-page: 260
  ident: bib40
  article-title: On the approximation of minimizing non zero variables or unsatisfied relations in linear systems
  publication-title: Theor. Comput. Sci.
– reference: C. Rosenberg, M. Hebert, H. Schneiderman, Semi-Supervised self-training of object detection models, in: Proceedings of the Seventh IEEE Workshops Application of Computer Vision, pp. 29–36, 2005.
– volume: 139
  start-page: 345
  year: 2014
  end-page: 356
  ident: bib28
  article-title: A kernel-based sparsity preserving method for semi-supervised classification
  publication-title: Neurocomputing
– start-page: 193
  year: 2006
  end-page: 216
  ident: bib19
  article-title: Label propagation and quadratic criterion
  publication-title: Semi-Supervised Learning
– volume: 7
  start-page: 2399
  year: 2006
  end-page: 2434
  ident: bib7
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J. Mach. Learn. Res.
– start-page: 764
  year: 2005
  end-page: 769
  ident: bib3
  article-title: A hybrid generative/discriminative approach to semi-supervised classifier design
  publication-title: Proc. 20th Natl. Conf. Artif. Intell.
– volume: 290
  start-page: 2319
  year: 2000
  end-page: 2323
  ident: bib35
  article-title: A global geometric framework for nonlinear dimensionality Reduction
  publication-title: Science
– volume: 43
  start-page: 129
  year: 2001
  end-page: 159
  ident: bib41
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM Review
– reference: D. Needell, J.A. Tropp, R. Vershynin, Greedy signal recovery review, in: Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, pp. 1048–1050, 2008.
– volume: 77
  start-page: 120
  year: 2012
  end-page: 128
  ident: bib30
  article-title: Kernel sparse representation based classification
  publication-title: Neurocomputing
– reference: F. Wang, J.D. Wang, C.S. Zhang, H.C. Shen, Supervised classification using linear neighborhood propagation, IEEE Conference on CVPR׳06, 1, pp. 160–167, 2006.
– volume: 11
  start-page: 2423
  year: 2010
  end-page: 2455
  ident: bib26
  article-title: Sparse semi-supervised learning using conjugate functions
  publication-title: J. Mach. Learn. Res.
– reference: F.S. Samaria, A.C. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 138–142, 1994.
– volume: 99
  start-page: 76
  year: 2013
  end-page: 86
  ident: bib31
  article-title: A nonnegative sparse representation based fuzzy similar neighbor classifier
  publication-title: Neurocomputing
– volume: 31
  start-page: 1600
  year: 2009
  end-page: 1615
  ident: bib17
  article-title: Linear neighborhood propagation and its applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 23
  start-page: 643
  year: 2001
  end-page: 660
  ident: bib47
  article-title: From few to many: Illumination cone models for face recognition under variable lighting and pose
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 39
  start-page: 505
  year: 2009
  end-page: 519
  ident: bib48
  article-title: Palmprint recognition using 3-D information
  publication-title: IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev.
– volume: 45
  start-page: 2390
  year: 2012
  end-page: 2404
  ident: bib32
  article-title: Robust visual tracking with structured sparse representation appearance model
  publication-title: Pattern Recognit.
– reference: M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp. 93–104, 2000.
– volume: 39
  start-page: 505
  issue: 5
  year: 2009
  ident: 10.1016/j.neucom.2014.11.053_bib48
  article-title: Palmprint recognition using 3-D information
  publication-title: IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev.
  doi: 10.1109/TSMCC.2009.2020790
– volume: 50
  start-page: 2231
  issue: 10
  year: 2004
  ident: 10.1016/j.neucom.2014.11.053_bib43
  article-title: Greed is good: algorithmic results for sparse approximation
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2004.834793
– volume: 45
  start-page: 2390
  issue: 6
  year: 2012
  ident: 10.1016/j.neucom.2014.11.053_bib32
  article-title: Robust visual tracking with structured sparse representation appearance model
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.12.004
– volume: 77
  start-page: 120
  year: 2012
  ident: 10.1016/j.neucom.2014.11.053_bib30
  article-title: Kernel sparse representation based classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.08.018
– volume: 23
  start-page: 643
  issue: 6
  year: 2001
  ident: 10.1016/j.neucom.2014.11.053_bib47
  article-title: From few to many: Illumination cone models for face recognition under variable lighting and pose
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.927464
– volume: 44
  start-page: 1777
  issue: 8
  year: 2011
  ident: 10.1016/j.neucom.2014.11.053_bib27
  article-title: Sparse regularization for semi-supervised classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.02.013
– volume: 12
  start-page: 181
  issue: 2
  year: 2001
  ident: 10.1016/j.neucom.2014.11.053_bib53
  article-title: An introduction to kernel-based learning algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.914517
– start-page: 17
  year: 2005
  ident: 10.1016/j.neucom.2014.11.053_bib13
  article-title: On manifold regularization
  publication-title: Proc. 10th Int. Worksh. Artif. Intell. Stat.
– volume: 31
  start-page: 1600
  year: 2009
  ident: 10.1016/j.neucom.2014.11.053_bib17
  article-title: Linear neighborhood propagation and its applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.216
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  ident: 10.1016/j.neucom.2014.11.053_bib35
  article-title: A global geometric framework for nonlinear dimensionality Reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– ident: 10.1016/j.neucom.2014.11.053_bib9
– volume: 15
  start-page: 29
  year: 2001
  ident: 10.1016/j.neucom.2014.11.053_bib5
  article-title: Semi-supervised support vector machines for unlabeled data classification
  publication-title: Optim. Methods Software
  doi: 10.1080/10556780108805809
– volume: 98
  start-page: 1031
  issue: 6
  year: 2010
  ident: 10.1016/j.neucom.2014.11.053_bib22
  article-title: Sparse recognition for computer vision and pattern recognition
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2044470
– start-page: 753
  year: 2005
  ident: 10.1016/j.neucom.2014.11.053_bib10
  article-title: Semi-supervised learning via gaussian processes
  publication-title: Proc. Neural Inf. Process. Syst. Conf.
– ident: 10.1016/j.neucom.2014.11.053_bib37
  doi: 10.1145/342009.335388
– ident: 10.1016/j.neucom.2014.11.053_bib11
– start-page: 863
  year: 2012
  ident: 10.1016/j.neucom.2014.11.053_bib20
  article-title: Global linear neighborhood for efficient label propagation
  publication-title: Proc. SIAM Int. Conf. Data Min. (SDM)
  doi: 10.1137/1.9781611972825.74
– volume: 43
  start-page: 129
  issue: 1
  year: 2001
  ident: 10.1016/j.neucom.2014.11.053_bib41
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM Review
  doi: 10.1137/S003614450037906X
– volume: 97
  start-page: 267
  year: 2012
  ident: 10.1016/j.neucom.2014.11.053_bib44
  article-title: Label propagation through sparse neighborhood and its applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.03.017
– volume: 11
  start-page: 2423
  year: 2010
  ident: 10.1016/j.neucom.2014.11.053_bib26
  article-title: Sparse semi-supervised learning using conjugate functions
  publication-title: J. Mach. Learn. Res.
– start-page: 586
  year: 1991
  ident: 10.1016/j.neucom.2014.11.053_bib50
  article-title: Face Recognition Using Eigenfaces
  publication-title: IEEE Conf. Comput. Vis. Pattern Recognit.
– start-page: 764
  year: 2005
  ident: 10.1016/j.neucom.2014.11.053_bib3
  article-title: A hybrid generative/discriminative approach to semi-supervised classifier design
  publication-title: Proc. 20th Natl. Conf. Artif. Intell.
– start-page: 290
  year: 2003
  ident: 10.1016/j.neucom.2014.11.053_bib12
  article-title: Transductive learning via spectral graph partitioning
  publication-title: Proc. 20th Intl. Conf. Mach. Learn.
– ident: 10.1016/j.neucom.2014.11.053_bib42
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  ident: 10.1016/j.neucom.2014.11.053_bib34
  article-title: Nonlinear dimensionality analysis by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– ident: 10.1016/j.neucom.2014.11.053_bib45
– volume: 139
  start-page: 345
  year: 2014
  ident: 10.1016/j.neucom.2014.11.053_bib28
  article-title: A kernel-based sparsity preserving method for semi-supervised classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.022
– volume: 124
  start-page: 13
  year: 2013
  ident: 10.1016/j.neucom.2014.11.053_bib25
  article-title: Manifold-preserving graph reduction for sparse semi-supervised learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.070
– volume: 31
  start-page: 890
  issue: 2
  year: 2008
  ident: 10.1016/j.neucom.2014.11.053_bib51
  article-title: Probing the Pareto frontier for basis pursuit solutions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/080714488
– volume: 1
  start-page: 606
  issue: 4
  year: 2007
  ident: 10.1016/j.neucom.2014.11.053_bib52
  article-title: A method for large-scale ℓ1-regularized least squares problems with applications in signal processing and statistics
  publication-title: IEEE J. Sel. Top. Signal Process
  doi: 10.1109/JSTSP.2007.910971
– volume: 22
  start-page: 2223
  year: 2009
  ident: 10.1016/j.neucom.2014.11.053_bib38
  article-title: Nonlinear learning using local coordinate coding
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 98
  start-page: 972
  year: 2010
  ident: 10.1016/j.neucom.2014.11.053_bib21
  article-title: On the role of sparse and redundant representations in image processing
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2009.2037655
– volume: 20
  start-page: 55
  issue: 1
  year: 2008
  ident: 10.1016/j.neucom.2014.11.053_bib18
  article-title: Label propagation through linear neighborhoods
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2007.190672
– ident: 10.1016/j.neucom.2014.11.053_bib6
  doi: 10.1109/ACVMOT.2005.107
– start-page: 792
  year: 2009
  ident: 10.1016/j.neucom.2014.11.053_bib49
  article-title: Semi-supervised learning by sparse representation
  publication-title: Proc. SIAM Int. Conf. Data Min. (SDM)
– ident: 10.1016/j.neucom.2014.11.053_bib16
  doi: 10.1109/CVPR.2006.272
– ident: 10.1016/j.neucom.2014.11.053_bib4
  doi: 10.1109/ACVMOT.2005.107
– volume: 19
  start-page: 858
  issue: 4
  year: 2010
  ident: 10.1016/j.neucom.2014.11.053_bib24
  article-title: Learning with L1-graph for image analysis
  publication-title: IEEE Trans. Image Process. (TIP)
  doi: 10.1109/TIP.2009.2038764
– volume: 16
  year: 2003
  ident: 10.1016/j.neucom.2014.11.053_bib15
  article-title: Learning with local and global consistency
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 31
  start-page: 210
  issue: 2
  year: 2009
  ident: 10.1016/j.neucom.2014.11.053_bib29
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
– volume: 41
  start-page: 2789
  issue: 9
  year: 2008
  ident: 10.1016/j.neucom.2014.11.053_bib8
  article-title: A unified framework for semi-supervised dimensionality reduction
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.01.001
– start-page: 193
  year: 2006
  ident: 10.1016/j.neucom.2014.11.053_bib19
  article-title: Label propagation and quadratic criterion
– ident: 10.1016/j.neucom.2014.11.053_bib46
  doi: 10.1109/ACV.1994.341300
– ident: 10.1016/j.neucom.2014.11.053_bib33
– volume: 25
  start-page: 1499
  issue: 11
  year: 2003
  ident: 10.1016/j.neucom.2014.11.053_bib36
  article-title: Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2003.1240123
– volume: 93
  start-page: 1408
  issue: 6
  year: 2013
  ident: 10.1016/j.neucom.2014.11.053_bib23
  article-title: Sparse representation and learning in visual recognition: Theory and applications
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.09.011
– volume: 99
  start-page: 76
  year: 2013
  ident: 10.1016/j.neucom.2014.11.053_bib31
  article-title: A nonnegative sparse representation based fuzzy similar neighbor classifier
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.06.018
– volume: 209
  start-page: 237
  year: 1998
  ident: 10.1016/j.neucom.2014.11.053_bib40
  article-title: On the approximation of minimizing non zero variables or unsatisfied relations in linear systems
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(97)00115-1
– start-page: 92
  year: 1998
  ident: 10.1016/j.neucom.2014.11.053_bib2
  article-title: Combining labeled and unlabeled data with Co-Training
  publication-title: Proc. 11th Ann. Conf. Learn. Theory
– volume: 7
  start-page: 2399
  year: 2006
  ident: 10.1016/j.neucom.2014.11.053_bib7
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2014.11.053_bib39
  doi: 10.1109/ICIP.2011.6116666
– start-page: 19
  year: 2001
  ident: 10.1016/j.neucom.2014.11.053_bib14
  article-title: Learning from labeled and unlabeled data using graph mincuts
  publication-title: ICML
– start-page: 912
  year: 2003
  ident: 10.1016/j.neucom.2014.11.053_bib1
  article-title: Semi-supervised learning using gaussian fields and harmonic functions
  publication-title: Proc. 20th Int. Conf. Mach. Learn.
SSID ssj0017129
Score 2.0876608
Snippet In many practical applications of machine vision, a small number of samples are labeled and therefore, classification accuracy is low. On the other hand,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms Graph-based algorithms
Local information
Semi-supervised learning algorithms
Sparse representation
Title Label propagation based on local information with adaptive determination of number and degree of neighbor׳s similarity
URI https://dx.doi.org/10.1016/j.neucom.2014.11.053
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtNAGB6FlgMXKJsotGgO9FRN5WXs8RxNCQIEFVKKlJs1noWmSp2oSUvhRXgQHobX4Z_FbqwgNolDLMvOTEbzf_m3-ReEnhmVGkASJWAiG0KFUaRWuSaUMZYxkUiuCtdsgh0dFeMxfz8YfG1zYS6nrGmKqys-_6-khmdAbJs6-xfk7iaFB3APRIcrkB2uf0T4t6LWUxt3BazCU9dKKmVPBZzg2g-1Ut0rn9qmxNxFEKk2NqZVI32_EHfAoDRY5s7B0FhvKkBn7wXbe54u9heTswnYx5Nl74TYVf2QrmdE8EaUZ7Yog7II7LwPI2GM8MnuI_0ZVllOgQd_6WTFEIz5E5ifvJt9PBHKo7esa9FzV8SZi3K5dleu59F4Z2SSEdA0PV_WnhUXLHFJ7j1enaUr3NaXzApy279ZkwjeOXF60OgLGx4ES6IHtmxrmKhfa3tkF2LXYc3OnLL8BtpMWMaB42-Wr4fjN90BFYsTX8YxLLzNynShg-u_9XOtZ0WTOd5Ct4MJgksPnbtooJt76E7b3gMHbn8ffXJIwitIwg5JGG4ckvAKkrBFEm6RhHtIwjODPZIwIAl7JLmHAUnfvy3wNYoeoA8vh8eHr0jo00Ek6IspEVQJVisuuUkYLTSL60jGicyZLTCnChAKucppHEsuha0wKHLOBROpUVEujE4foo1m1uhHCMPQOpOSRkrVNDKi0DnY3FRGWQIfRrdR2u5jJUMRe9tLZVq10Yqnld_9yu4-2LcV7P42It2ouS_i8pvvs5ZEVVBEvYJZAap-OfLxP498gm51f5d0B20szy_0LropL5eTxfnTAL8fBSO0XA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label+propagation+based+on+local+information+with+adaptive+determination+of+number+and+degree+of+neighbor%D7%B3s+similarity&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Saffari%2C+Seyed+Alireza&rft.au=Ebrahimi-Moghadam%2C+Abbas&rft.date=2015-04-04&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=153&rft.spage=41&rft.epage=53&rft_id=info:doi/10.1016%2Fj.neucom.2014.11.053&rft.externalDocID=S0925231214016476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon