Label propagation based on local information with adaptive determination of number and degree of neighbor׳s similarity
In many practical applications of machine vision, a small number of samples are labeled and therefore, classification accuracy is low. On the other hand, labeling by humans is a very time consuming process, which requires a degree of proficiency. Semi-supervised learning algorithms may be used as a...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 153; s. 41 - 53 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
04.04.2015
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In many practical applications of machine vision, a small number of samples are labeled and therefore, classification accuracy is low. On the other hand, labeling by humans is a very time consuming process, which requires a degree of proficiency. Semi-supervised learning algorithms may be used as a proper solution in these situations, where ε-neighborhood or k nearest neighborhood graphs are employed to build a similarity graph. These graphs, on one hand, have a high degree of sensitivity to noise. On the other hand, optimal determination of ε and k parameters is a complex task. In some classification algorithms, sparse representation (SR) is employed in order to overcome these obstacles. Although SR has its own advantages, SR theory in its coding stage does not reflect local information and it requires a time consuming and heavy optimization process. Locality-constrained Linear Coding (LLC) addresses these problems and regards the local information in the coding process. In this paper we examine the effectiveness of using local information in form of label propagation algorithm and present three new label propagation modifications. Experimental results on three UCI datasets, two face databases and a biometric database show that our proposed algorithms have higher classification rates compared to other competitive algorithms. |
|---|---|
| AbstractList | In many practical applications of machine vision, a small number of samples are labeled and therefore, classification accuracy is low. On the other hand, labeling by humans is a very time consuming process, which requires a degree of proficiency. Semi-supervised learning algorithms may be used as a proper solution in these situations, where ε-neighborhood or k nearest neighborhood graphs are employed to build a similarity graph. These graphs, on one hand, have a high degree of sensitivity to noise. On the other hand, optimal determination of ε and k parameters is a complex task. In some classification algorithms, sparse representation (SR) is employed in order to overcome these obstacles. Although SR has its own advantages, SR theory in its coding stage does not reflect local information and it requires a time consuming and heavy optimization process. Locality-constrained Linear Coding (LLC) addresses these problems and regards the local information in the coding process. In this paper we examine the effectiveness of using local information in form of label propagation algorithm and present three new label propagation modifications. Experimental results on three UCI datasets, two face databases and a biometric database show that our proposed algorithms have higher classification rates compared to other competitive algorithms. |
| Author | Ebrahimi-Moghadam, Abbas Saffari, Seyed Alireza |
| Author_xml | – sequence: 1 givenname: Seyed Alireza surname: Saffari fullname: Saffari, Seyed Alireza email: arsaffari@yahoo.com – sequence: 2 givenname: Abbas surname: Ebrahimi-Moghadam fullname: Ebrahimi-Moghadam, Abbas |
| BookMark | eNqFkEtOxDAMhiMEEsPjBixygZY4fbNAQoiXNBIbWEdu4g4Ztcko6QziXByG61AoKxawsuVfn2V_R2zfeUeMnYFIQUB5vk4dbbUfUikgTwFSUWR7bAF1JZNa1uU-W4hGFonMQB6yoxjXQkAFslmw1yW21PNN8Btc4Wi94y1GMnxqeq-x59Z1Pgxz9GrHF44GN6PdETc0UhismzPfcbcdWgocnZmyVSD6HpJdvbQ-fLxHHu1gewx2fDthBx32kU5_6jF7vr15ur5Plo93D9dXy0RDAVmCucGqNY1uOlnlNVXQCg1Sl5XIpTR1UdWlKXMA3WiEpsixbBqsMOuMKLGj7JhdzHt18DEG6pS24_fBY0DbKxDqS6Faq1mh-lKoANSkcILzX_Am2AHD23_Y5YzR9NjOUlBRW3KajA2kR2W8_XvBJ7Uck0Y |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2016_09_090 crossref_primary_10_1089_cmb_2023_0084 crossref_primary_10_1016_j_eswa_2024_123302 crossref_primary_10_1111_jcmm_13799 crossref_primary_10_3389_fgene_2018_00576 crossref_primary_10_1016_j_ygeno_2019_08_001 |
| Cites_doi | 10.1109/TSMCC.2009.2020790 10.1109/TIT.2004.834793 10.1016/j.patcog.2011.12.004 10.1016/j.neucom.2011.08.018 10.1109/34.927464 10.1016/j.patcog.2011.02.013 10.1109/72.914517 10.1109/TPAMI.2008.216 10.1126/science.290.5500.2319 10.1080/10556780108805809 10.1109/JPROC.2010.2044470 10.1145/342009.335388 10.1137/1.9781611972825.74 10.1137/S003614450037906X 10.1016/j.neucom.2012.03.017 10.1126/science.290.5500.2323 10.1016/j.neucom.2014.02.022 10.1016/j.neucom.2012.08.070 10.1137/080714488 10.1109/JSTSP.2007.910971 10.1109/JPROC.2009.2037655 10.1109/TKDE.2007.190672 10.1109/ACVMOT.2005.107 10.1109/CVPR.2006.272 10.1109/TIP.2009.2038764 10.1109/TPAMI.2008.79 10.1016/j.patcog.2008.01.001 10.1109/ACV.1994.341300 10.1109/TPAMI.2003.1240123 10.1016/j.sigpro.2012.09.011 10.1016/j.neucom.2012.06.018 10.1016/S0304-3975(97)00115-1 10.1109/ICIP.2011.6116666 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier B.V. |
| Copyright_xml | – notice: 2014 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2014.11.053 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 53 |
| ExternalDocumentID | 10_1016_j_neucom_2014_11_053 S0925231214016476 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c1513-a4da7bd9c9f2748e71b0c12c670422d85786d6411c9ca1954a699a7a3fd06afe3 |
| ISSN | 0925-2312 |
| IngestDate | Tue Nov 18 20:38:48 EST 2025 Sat Nov 29 07:57:01 EST 2025 Fri Feb 23 02:28:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Semi-supervised learning algorithms Sparse representation Local information Graph-based algorithms |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1513-a4da7bd9c9f2748e71b0c12c670422d85786d6411c9ca1954a699a7a3fd06afe3 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2014_11_053 crossref_primary_10_1016_j_neucom_2014_11_053 elsevier_sciencedirect_doi_10_1016_j_neucom_2014_11_053 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-04-04 |
| PublicationDateYYYYMMDD | 2015-04-04 |
| PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Chapelle O., Weston J., Scholkopf B., Cluster kernels for semi-supervised learning, in: Proceedings of the Neural Information Processing Systems Conference, 15, pp. 585–592, 2003. Fujino, Ueda, Saito (bib3) 2005 Zang, Zhang (bib44) 2012; 97 Bengio, Alleau, Le Roux (bib19) 2006 Yan, Wang (bib49) 2009 Yin, Liu, Jin, Yang (bib30) 2012; 77 Kim, Koh, Lustig, Boyd, Gorinevsky (bib52) 2007; 1 Joachims (bib12) 2003 Cheng, Yang, Yan, Fu, Huang (bib24) 2010; 19 Roweis, Saul (bib34) 2000; 290 T. Joachims, Transductive inference for text classification using support vector machines, in: Proceedings of the 16th International Conference Machine Learning, 1999 Zhang, Lu, Li, Zhang, Luo (bib48) 2009; 39 Turk, Pentland (bib50) 1991 Chen, Donoho, Saunders (bib41) 2001; 43 D. Needell, J.A. Tropp, R. Vershynin, Greedy signal recovery review, in: Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, pp. 1048–1050, 2008. Georghiades, Belhumeur, Kriegman (bib47) 2001; 23 uller, Mike, atsch, Tsuda, olkopf (bib53) 2001; 12 Xu, Yang (bib31) 2013; 99 Elad, Figueiredo, Ma (bib21) 2010; 98 Sun, Shawe-Taylor (bib26) 2010; 11 Wright, Yang, Ganesh, Sastry, Ma (bib29) 2009; 31 Berg, Friedlander (bib51) 2008; 31 Wang, Wang, Zhang, Shen, Quan (bib17) 2009; 31 Cheng, Liu, Yang, Chen (bib23) 2013; 93 Blum, Chawla (bib14) 2001 Wright, Ma, Mairal, Sapiro, Huang, Yan (bib22) 2010; 98 Belkin, Niyogi, Sindhwani (bib7) 2006; 7 Tropp (bib43) 2004; 50 Zhou, Bousquet, Lal, Weston, Scho¨lkopf (bib15) 2003; 16 Elgammal, Duraiswami, Davis (bib36) 2003; 25 C. Blake, C. Merz, UCI Repository of Machine Learning Databases, 1998. Y.-W. Chao, Y.-R. Yeh, Y.-W. Chen, Y.-J. Lee, Y.-C.F. Wang, Locality-constrained group sparse representation for robust face recognition, in: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 761–764, 2011. Song, Nie, Zhang, Xiang (bib8) 2008; 41 F.S. Samaria, A.C. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 138–142, 1994. Lawrence, Jordan (bib10) 2005 Wang, Zhang (bib18) 2008; 20 Amaldi, Kann (bib40) 1998; 209 Tenenbaum, de Silva, Langford (bib35) 2000; 290 C. Rosenberg, M. Hebert, H. Schneiderman, Semi-Supervised self-training of object detection models, in: Proceedings of the Seventh IEEE Workshops Application of Computer Vision, pp. 29–36, 2005. J.Wang, J. Yang, K. Yu, F. Lv, T. Huang, Y. Gong, Locality-constrained linear coding for image classification, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3360–3367, 2010. Blum, Mitchell (bib2) 1998 Bai, Li (bib32) 2012; 45 Yu, Zhang, Gong (bib38) 2009; 22 Tian, Kuang (bib20) 2012 Fan, Gu, Qiao (bib27) 2011; 44 C. Rosenberg, M. Hebert, H. Schneiderman, Semi-supervised self-training of object detection models, in: Proceedings of the 7th Workshop on Applications of Computer Vision, 1, pp. 29–36, 2005. F. Wang, J.D. Wang, C.S. Zhang, H.C. Shen, Supervised classification using linear neighborhood propagation, IEEE Conference on CVPR׳06, 1, pp. 160–167, 2006. Fung, Mangasarian (bib5) 2001; 15 Sun, Hussain, Shawe-Taylor (bib25) 2013; 124 Belkin, Niyogi, Sindhwani (bib13) 2005 M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp. 93–104, 2000. Gu, Wang, Fan, Meng (bib28) 2014; 139 Zhu, Ghahramani, Lafferty (bib1) 2003 Tropp (10.1016/j.neucom.2014.11.053_bib43) 2004; 50 Bengio (10.1016/j.neucom.2014.11.053_bib19) 2006 10.1016/j.neucom.2014.11.053_bib33 Elgammal (10.1016/j.neucom.2014.11.053_bib36) 2003; 25 Blum (10.1016/j.neucom.2014.11.053_bib2) 1998 Wang (10.1016/j.neucom.2014.11.053_bib18) 2008; 20 Zang (10.1016/j.neucom.2014.11.053_bib44) 2012; 97 Georghiades (10.1016/j.neucom.2014.11.053_bib47) 2001; 23 Blum (10.1016/j.neucom.2014.11.053_bib14) 2001 Kim (10.1016/j.neucom.2014.11.053_bib52) 2007; 1 Zhu (10.1016/j.neucom.2014.11.053_bib1) 2003 10.1016/j.neucom.2014.11.053_bib4 10.1016/j.neucom.2014.11.053_bib6 Yan (10.1016/j.neucom.2014.11.053_bib49) 2009 10.1016/j.neucom.2014.11.053_bib9 Sun (10.1016/j.neucom.2014.11.053_bib25) 2013; 124 10.1016/j.neucom.2014.11.053_bib45 Yu (10.1016/j.neucom.2014.11.053_bib38) 2009; 22 10.1016/j.neucom.2014.11.053_bib42 Elad (10.1016/j.neucom.2014.11.053_bib21) 2010; 98 Chen (10.1016/j.neucom.2014.11.053_bib41) 2001; 43 uller (10.1016/j.neucom.2014.11.053_bib53) 2001; 12 Turk (10.1016/j.neucom.2014.11.053_bib50) 1991 10.1016/j.neucom.2014.11.053_bib37 Bai (10.1016/j.neucom.2014.11.053_bib32) 2012; 45 Yin (10.1016/j.neucom.2014.11.053_bib30) 2012; 77 10.1016/j.neucom.2014.11.053_bib39 Fan (10.1016/j.neucom.2014.11.053_bib27) 2011; 44 Lawrence (10.1016/j.neucom.2014.11.053_bib10) 2005 10.1016/j.neucom.2014.11.053_bib11 Tenenbaum (10.1016/j.neucom.2014.11.053_bib35) 2000; 290 Cheng (10.1016/j.neucom.2014.11.053_bib24) 2010; 19 Roweis (10.1016/j.neucom.2014.11.053_bib34) 2000; 290 Song (10.1016/j.neucom.2014.11.053_bib8) 2008; 41 Joachims (10.1016/j.neucom.2014.11.053_bib12) 2003 Sun (10.1016/j.neucom.2014.11.053_bib26) 2010; 11 Zhang (10.1016/j.neucom.2014.11.053_bib48) 2009; 39 Berg (10.1016/j.neucom.2014.11.053_bib51) 2008; 31 Zhou (10.1016/j.neucom.2014.11.053_bib15) 2003; 16 10.1016/j.neucom.2014.11.053_bib46 Xu (10.1016/j.neucom.2014.11.053_bib31) 2013; 99 Tian (10.1016/j.neucom.2014.11.053_bib20) 2012 Fujino (10.1016/j.neucom.2014.11.053_bib3) 2005 Fung (10.1016/j.neucom.2014.11.053_bib5) 2001; 15 Cheng (10.1016/j.neucom.2014.11.053_bib23) 2013; 93 Wang (10.1016/j.neucom.2014.11.053_bib17) 2009; 31 Wright (10.1016/j.neucom.2014.11.053_bib29) 2009; 31 Belkin (10.1016/j.neucom.2014.11.053_bib7) 2006; 7 Belkin (10.1016/j.neucom.2014.11.053_bib13) 2005 10.1016/j.neucom.2014.11.053_bib16 Amaldi (10.1016/j.neucom.2014.11.053_bib40) 1998; 209 Gu (10.1016/j.neucom.2014.11.053_bib28) 2014; 139 Wright (10.1016/j.neucom.2014.11.053_bib22) 2010; 98 |
| References_xml | – start-page: 792 year: 2009 end-page: 801 ident: bib49 article-title: Semi-supervised learning by sparse representation publication-title: Proc. SIAM Int. Conf. Data Min. (SDM) – reference: C. Blake, C. Merz, UCI Repository of Machine Learning Databases, 1998. – volume: 12 start-page: 181 year: 2001 end-page: 201 ident: bib53 article-title: An introduction to kernel-based learning algorithms publication-title: IEEE Trans. Neural Netw. – volume: 50 start-page: 2231 year: 2004 end-page: 2242 ident: bib43 article-title: Greed is good: algorithmic results for sparse approximation publication-title: IEEE Trans. Inf. Theory – volume: 41 start-page: 2789 year: 2008 end-page: 2799 ident: bib8 article-title: A unified framework for semi-supervised dimensionality reduction publication-title: Pattern Recognit. – reference: Chapelle O., Weston J., Scholkopf B., Cluster kernels for semi-supervised learning, in: Proceedings of the Neural Information Processing Systems Conference, 15, pp. 585–592, 2003. – volume: 15 start-page: 29 year: 2001 end-page: 44 ident: bib5 article-title: Semi-supervised support vector machines for unlabeled data classification publication-title: Optim. Methods Software – volume: 19 start-page: 858 year: 2010 end-page: 866 ident: bib24 article-title: Learning with L1-graph for image analysis publication-title: IEEE Trans. Image Process. (TIP) – volume: 22 start-page: 2223 year: 2009 end-page: 2231 ident: bib38 article-title: Nonlinear learning using local coordinate coding publication-title: Adv. Neural Inf. Process. Syst. – volume: 124 start-page: 13 year: 2013 end-page: 21 ident: bib25 article-title: Manifold-preserving graph reduction for sparse semi-supervised learning publication-title: Neurocomputing – volume: 20 start-page: 55 year: 2008 end-page: 67 ident: bib18 article-title: Label propagation through linear neighborhoods publication-title: IEEE Trans. Knowl. Data Eng. – reference: Y.-W. Chao, Y.-R. Yeh, Y.-W. Chen, Y.-J. Lee, Y.-C.F. Wang, Locality-constrained group sparse representation for robust face recognition, in: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 761–764, 2011. – start-page: 17 year: 2005 end-page: 24 ident: bib13 article-title: On manifold regularization publication-title: Proc. 10th Int. Worksh. Artif. Intell. Stat. – start-page: 863 year: 2012 end-page: 872 ident: bib20 article-title: Global linear neighborhood for efficient label propagation publication-title: Proc. SIAM Int. Conf. Data Min. (SDM) – volume: 93 start-page: 1408 year: 2013 end-page: 1425 ident: bib23 article-title: Sparse representation and learning in visual recognition: Theory and applications publication-title: Signal Process. – reference: J.Wang, J. Yang, K. Yu, F. Lv, T. Huang, Y. Gong, Locality-constrained linear coding for image classification, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3360–3367, 2010. – volume: 98 start-page: 972 year: 2010 end-page: 982 ident: bib21 article-title: On the role of sparse and redundant representations in image processing publication-title: Proc. IEEE – volume: 290 start-page: 2323 year: 2000 end-page: 2326 ident: bib34 article-title: Nonlinear dimensionality analysis by locally linear embedding publication-title: Science – volume: 25 start-page: 1499 year: 2003 end-page: 1504 ident: bib36 article-title: Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 98 start-page: 1031 year: 2010 end-page: 1044 ident: bib22 article-title: Sparse recognition for computer vision and pattern recognition publication-title: Proc. IEEE – volume: 44 start-page: 1777 year: 2011 end-page: 1784 ident: bib27 article-title: Sparse regularization for semi-supervised classification publication-title: Pattern Recognit. – start-page: 912 year: 2003 end-page: 919 ident: bib1 article-title: Semi-supervised learning using gaussian fields and harmonic functions publication-title: Proc. 20th Int. Conf. Mach. Learn. – start-page: 290 year: 2003 end-page: 297 ident: bib12 article-title: Transductive learning via spectral graph partitioning publication-title: Proc. 20th Intl. Conf. Mach. Learn. – start-page: 19 year: 2001 end-page: 26 ident: bib14 article-title: Learning from labeled and unlabeled data using graph mincuts publication-title: ICML – reference: C. Rosenberg, M. Hebert, H. Schneiderman, Semi-supervised self-training of object detection models, in: Proceedings of the 7th Workshop on Applications of Computer Vision, 1, pp. 29–36, 2005. – volume: 97 start-page: 267 year: 2012 end-page: 277 ident: bib44 article-title: Label propagation through sparse neighborhood and its applications publication-title: Neurocomputing – volume: 16 year: 2003 ident: bib15 article-title: Learning with local and global consistency publication-title: Adv. Neural Inf. Process. Syst. – volume: 31 start-page: 210 year: 2009 end-page: 227 ident: bib29 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 1 start-page: 606 year: 2007 end-page: 617 ident: bib52 article-title: A method for large-scale ℓ1-regularized least squares problems with applications in signal processing and statistics publication-title: IEEE J. Sel. Top. Signal Process – volume: 31 start-page: 890 year: 2008 end-page: 912 ident: bib51 article-title: Probing the Pareto frontier for basis pursuit solutions publication-title: SIAM J. Sci. Comput. – reference: T. Joachims, Transductive inference for text classification using support vector machines, in: Proceedings of the 16th International Conference Machine Learning, 1999 – start-page: 753 year: 2005 end-page: 760 ident: bib10 article-title: Semi-supervised learning via gaussian processes publication-title: Proc. Neural Inf. Process. Syst. Conf. – start-page: 92 year: 1998 end-page: 100 ident: bib2 article-title: Combining labeled and unlabeled data with Co-Training publication-title: Proc. 11th Ann. Conf. Learn. Theory – start-page: 586 year: 1991 end-page: 591 ident: bib50 article-title: Face Recognition Using Eigenfaces publication-title: IEEE Conf. Comput. Vis. Pattern Recognit. – volume: 209 start-page: 237 year: 1998 end-page: 260 ident: bib40 article-title: On the approximation of minimizing non zero variables or unsatisfied relations in linear systems publication-title: Theor. Comput. Sci. – reference: C. Rosenberg, M. Hebert, H. Schneiderman, Semi-Supervised self-training of object detection models, in: Proceedings of the Seventh IEEE Workshops Application of Computer Vision, pp. 29–36, 2005. – volume: 139 start-page: 345 year: 2014 end-page: 356 ident: bib28 article-title: A kernel-based sparsity preserving method for semi-supervised classification publication-title: Neurocomputing – start-page: 193 year: 2006 end-page: 216 ident: bib19 article-title: Label propagation and quadratic criterion publication-title: Semi-Supervised Learning – volume: 7 start-page: 2399 year: 2006 end-page: 2434 ident: bib7 article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples publication-title: J. Mach. Learn. Res. – start-page: 764 year: 2005 end-page: 769 ident: bib3 article-title: A hybrid generative/discriminative approach to semi-supervised classifier design publication-title: Proc. 20th Natl. Conf. Artif. Intell. – volume: 290 start-page: 2319 year: 2000 end-page: 2323 ident: bib35 article-title: A global geometric framework for nonlinear dimensionality Reduction publication-title: Science – volume: 43 start-page: 129 year: 2001 end-page: 159 ident: bib41 article-title: Atomic decomposition by basis pursuit publication-title: SIAM Review – reference: D. Needell, J.A. Tropp, R. Vershynin, Greedy signal recovery review, in: Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, pp. 1048–1050, 2008. – volume: 77 start-page: 120 year: 2012 end-page: 128 ident: bib30 article-title: Kernel sparse representation based classification publication-title: Neurocomputing – reference: F. Wang, J.D. Wang, C.S. Zhang, H.C. Shen, Supervised classification using linear neighborhood propagation, IEEE Conference on CVPR׳06, 1, pp. 160–167, 2006. – volume: 11 start-page: 2423 year: 2010 end-page: 2455 ident: bib26 article-title: Sparse semi-supervised learning using conjugate functions publication-title: J. Mach. Learn. Res. – reference: F.S. Samaria, A.C. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 138–142, 1994. – volume: 99 start-page: 76 year: 2013 end-page: 86 ident: bib31 article-title: A nonnegative sparse representation based fuzzy similar neighbor classifier publication-title: Neurocomputing – volume: 31 start-page: 1600 year: 2009 end-page: 1615 ident: bib17 article-title: Linear neighborhood propagation and its applications publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 23 start-page: 643 year: 2001 end-page: 660 ident: bib47 article-title: From few to many: Illumination cone models for face recognition under variable lighting and pose publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 39 start-page: 505 year: 2009 end-page: 519 ident: bib48 article-title: Palmprint recognition using 3-D information publication-title: IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev. – volume: 45 start-page: 2390 year: 2012 end-page: 2404 ident: bib32 article-title: Robust visual tracking with structured sparse representation appearance model publication-title: Pattern Recognit. – reference: M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp. 93–104, 2000. – volume: 39 start-page: 505 issue: 5 year: 2009 ident: 10.1016/j.neucom.2014.11.053_bib48 article-title: Palmprint recognition using 3-D information publication-title: IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev. doi: 10.1109/TSMCC.2009.2020790 – volume: 50 start-page: 2231 issue: 10 year: 2004 ident: 10.1016/j.neucom.2014.11.053_bib43 article-title: Greed is good: algorithmic results for sparse approximation publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2004.834793 – volume: 45 start-page: 2390 issue: 6 year: 2012 ident: 10.1016/j.neucom.2014.11.053_bib32 article-title: Robust visual tracking with structured sparse representation appearance model publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.12.004 – volume: 77 start-page: 120 year: 2012 ident: 10.1016/j.neucom.2014.11.053_bib30 article-title: Kernel sparse representation based classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.08.018 – volume: 23 start-page: 643 issue: 6 year: 2001 ident: 10.1016/j.neucom.2014.11.053_bib47 article-title: From few to many: Illumination cone models for face recognition under variable lighting and pose publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.927464 – volume: 44 start-page: 1777 issue: 8 year: 2011 ident: 10.1016/j.neucom.2014.11.053_bib27 article-title: Sparse regularization for semi-supervised classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.02.013 – volume: 12 start-page: 181 issue: 2 year: 2001 ident: 10.1016/j.neucom.2014.11.053_bib53 article-title: An introduction to kernel-based learning algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.914517 – start-page: 17 year: 2005 ident: 10.1016/j.neucom.2014.11.053_bib13 article-title: On manifold regularization publication-title: Proc. 10th Int. Worksh. Artif. Intell. Stat. – volume: 31 start-page: 1600 year: 2009 ident: 10.1016/j.neucom.2014.11.053_bib17 article-title: Linear neighborhood propagation and its applications publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.216 – volume: 290 start-page: 2319 issue: 5500 year: 2000 ident: 10.1016/j.neucom.2014.11.053_bib35 article-title: A global geometric framework for nonlinear dimensionality Reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – ident: 10.1016/j.neucom.2014.11.053_bib9 – volume: 15 start-page: 29 year: 2001 ident: 10.1016/j.neucom.2014.11.053_bib5 article-title: Semi-supervised support vector machines for unlabeled data classification publication-title: Optim. Methods Software doi: 10.1080/10556780108805809 – volume: 98 start-page: 1031 issue: 6 year: 2010 ident: 10.1016/j.neucom.2014.11.053_bib22 article-title: Sparse recognition for computer vision and pattern recognition publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2044470 – start-page: 753 year: 2005 ident: 10.1016/j.neucom.2014.11.053_bib10 article-title: Semi-supervised learning via gaussian processes publication-title: Proc. Neural Inf. Process. Syst. Conf. – ident: 10.1016/j.neucom.2014.11.053_bib37 doi: 10.1145/342009.335388 – ident: 10.1016/j.neucom.2014.11.053_bib11 – start-page: 863 year: 2012 ident: 10.1016/j.neucom.2014.11.053_bib20 article-title: Global linear neighborhood for efficient label propagation publication-title: Proc. SIAM Int. Conf. Data Min. (SDM) doi: 10.1137/1.9781611972825.74 – volume: 43 start-page: 129 issue: 1 year: 2001 ident: 10.1016/j.neucom.2014.11.053_bib41 article-title: Atomic decomposition by basis pursuit publication-title: SIAM Review doi: 10.1137/S003614450037906X – volume: 97 start-page: 267 year: 2012 ident: 10.1016/j.neucom.2014.11.053_bib44 article-title: Label propagation through sparse neighborhood and its applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.03.017 – volume: 11 start-page: 2423 year: 2010 ident: 10.1016/j.neucom.2014.11.053_bib26 article-title: Sparse semi-supervised learning using conjugate functions publication-title: J. Mach. Learn. Res. – start-page: 586 year: 1991 ident: 10.1016/j.neucom.2014.11.053_bib50 article-title: Face Recognition Using Eigenfaces publication-title: IEEE Conf. Comput. Vis. Pattern Recognit. – start-page: 764 year: 2005 ident: 10.1016/j.neucom.2014.11.053_bib3 article-title: A hybrid generative/discriminative approach to semi-supervised classifier design publication-title: Proc. 20th Natl. Conf. Artif. Intell. – start-page: 290 year: 2003 ident: 10.1016/j.neucom.2014.11.053_bib12 article-title: Transductive learning via spectral graph partitioning publication-title: Proc. 20th Intl. Conf. Mach. Learn. – ident: 10.1016/j.neucom.2014.11.053_bib42 – volume: 290 start-page: 2323 issue: 5500 year: 2000 ident: 10.1016/j.neucom.2014.11.053_bib34 article-title: Nonlinear dimensionality analysis by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – ident: 10.1016/j.neucom.2014.11.053_bib45 – volume: 139 start-page: 345 year: 2014 ident: 10.1016/j.neucom.2014.11.053_bib28 article-title: A kernel-based sparsity preserving method for semi-supervised classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.02.022 – volume: 124 start-page: 13 year: 2013 ident: 10.1016/j.neucom.2014.11.053_bib25 article-title: Manifold-preserving graph reduction for sparse semi-supervised learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.070 – volume: 31 start-page: 890 issue: 2 year: 2008 ident: 10.1016/j.neucom.2014.11.053_bib51 article-title: Probing the Pareto frontier for basis pursuit solutions publication-title: SIAM J. Sci. Comput. doi: 10.1137/080714488 – volume: 1 start-page: 606 issue: 4 year: 2007 ident: 10.1016/j.neucom.2014.11.053_bib52 article-title: A method for large-scale ℓ1-regularized least squares problems with applications in signal processing and statistics publication-title: IEEE J. Sel. Top. Signal Process doi: 10.1109/JSTSP.2007.910971 – volume: 22 start-page: 2223 year: 2009 ident: 10.1016/j.neucom.2014.11.053_bib38 article-title: Nonlinear learning using local coordinate coding publication-title: Adv. Neural Inf. Process. Syst. – volume: 98 start-page: 972 year: 2010 ident: 10.1016/j.neucom.2014.11.053_bib21 article-title: On the role of sparse and redundant representations in image processing publication-title: Proc. IEEE doi: 10.1109/JPROC.2009.2037655 – volume: 20 start-page: 55 issue: 1 year: 2008 ident: 10.1016/j.neucom.2014.11.053_bib18 article-title: Label propagation through linear neighborhoods publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2007.190672 – ident: 10.1016/j.neucom.2014.11.053_bib6 doi: 10.1109/ACVMOT.2005.107 – start-page: 792 year: 2009 ident: 10.1016/j.neucom.2014.11.053_bib49 article-title: Semi-supervised learning by sparse representation publication-title: Proc. SIAM Int. Conf. Data Min. (SDM) – ident: 10.1016/j.neucom.2014.11.053_bib16 doi: 10.1109/CVPR.2006.272 – ident: 10.1016/j.neucom.2014.11.053_bib4 doi: 10.1109/ACVMOT.2005.107 – volume: 19 start-page: 858 issue: 4 year: 2010 ident: 10.1016/j.neucom.2014.11.053_bib24 article-title: Learning with L1-graph for image analysis publication-title: IEEE Trans. Image Process. (TIP) doi: 10.1109/TIP.2009.2038764 – volume: 16 year: 2003 ident: 10.1016/j.neucom.2014.11.053_bib15 article-title: Learning with local and global consistency publication-title: Adv. Neural Inf. Process. Syst. – volume: 31 start-page: 210 issue: 2 year: 2009 ident: 10.1016/j.neucom.2014.11.053_bib29 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.79 – volume: 41 start-page: 2789 issue: 9 year: 2008 ident: 10.1016/j.neucom.2014.11.053_bib8 article-title: A unified framework for semi-supervised dimensionality reduction publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.01.001 – start-page: 193 year: 2006 ident: 10.1016/j.neucom.2014.11.053_bib19 article-title: Label propagation and quadratic criterion – ident: 10.1016/j.neucom.2014.11.053_bib46 doi: 10.1109/ACV.1994.341300 – ident: 10.1016/j.neucom.2014.11.053_bib33 – volume: 25 start-page: 1499 issue: 11 year: 2003 ident: 10.1016/j.neucom.2014.11.053_bib36 article-title: Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2003.1240123 – volume: 93 start-page: 1408 issue: 6 year: 2013 ident: 10.1016/j.neucom.2014.11.053_bib23 article-title: Sparse representation and learning in visual recognition: Theory and applications publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.09.011 – volume: 99 start-page: 76 year: 2013 ident: 10.1016/j.neucom.2014.11.053_bib31 article-title: A nonnegative sparse representation based fuzzy similar neighbor classifier publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.06.018 – volume: 209 start-page: 237 year: 1998 ident: 10.1016/j.neucom.2014.11.053_bib40 article-title: On the approximation of minimizing non zero variables or unsatisfied relations in linear systems publication-title: Theor. Comput. Sci. doi: 10.1016/S0304-3975(97)00115-1 – start-page: 92 year: 1998 ident: 10.1016/j.neucom.2014.11.053_bib2 article-title: Combining labeled and unlabeled data with Co-Training publication-title: Proc. 11th Ann. Conf. Learn. Theory – volume: 7 start-page: 2399 year: 2006 ident: 10.1016/j.neucom.2014.11.053_bib7 article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.neucom.2014.11.053_bib39 doi: 10.1109/ICIP.2011.6116666 – start-page: 19 year: 2001 ident: 10.1016/j.neucom.2014.11.053_bib14 article-title: Learning from labeled and unlabeled data using graph mincuts publication-title: ICML – start-page: 912 year: 2003 ident: 10.1016/j.neucom.2014.11.053_bib1 article-title: Semi-supervised learning using gaussian fields and harmonic functions publication-title: Proc. 20th Int. Conf. Mach. Learn. |
| SSID | ssj0017129 |
| Score | 2.0876608 |
| Snippet | In many practical applications of machine vision, a small number of samples are labeled and therefore, classification accuracy is low. On the other hand,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 41 |
| SubjectTerms | Graph-based algorithms Local information Semi-supervised learning algorithms Sparse representation |
| Title | Label propagation based on local information with adaptive determination of number and degree of neighbor׳s similarity |
| URI | https://dx.doi.org/10.1016/j.neucom.2014.11.053 |
| Volume | 153 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtNAGB6FlgMXKJsotGgO9FRN5WXs8RxNCQIEFVKKlJs1noWmSp2oSUvhRXgQHobX4Z_FbqwgNolDLMvOTEbzf_m3-ReEnhmVGkASJWAiG0KFUaRWuSaUMZYxkUiuCtdsgh0dFeMxfz8YfG1zYS6nrGmKqys-_6-khmdAbJs6-xfk7iaFB3APRIcrkB2uf0T4t6LWUxt3BazCU9dKKmVPBZzg2g-1Ut0rn9qmxNxFEKk2NqZVI32_EHfAoDRY5s7B0FhvKkBn7wXbe54u9heTswnYx5Nl74TYVf2QrmdE8EaUZ7Yog7II7LwPI2GM8MnuI_0ZVllOgQd_6WTFEIz5E5ifvJt9PBHKo7esa9FzV8SZi3K5dleu59F4Z2SSEdA0PV_WnhUXLHFJ7j1enaUr3NaXzApy279ZkwjeOXF60OgLGx4ES6IHtmxrmKhfa3tkF2LXYc3OnLL8BtpMWMaB42-Wr4fjN90BFYsTX8YxLLzNynShg-u_9XOtZ0WTOd5Ct4MJgksPnbtooJt76E7b3gMHbn8ffXJIwitIwg5JGG4ckvAKkrBFEm6RhHtIwjODPZIwIAl7JLmHAUnfvy3wNYoeoA8vh8eHr0jo00Ek6IspEVQJVisuuUkYLTSL60jGicyZLTCnChAKucppHEsuha0wKHLOBROpUVEujE4foo1m1uhHCMPQOpOSRkrVNDKi0DnY3FRGWQIfRrdR2u5jJUMRe9tLZVq10Yqnld_9yu4-2LcV7P42It2ouS_i8pvvs5ZEVVBEvYJZAap-OfLxP498gm51f5d0B20szy_0LropL5eTxfnTAL8fBSO0XA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label+propagation+based+on+local+information+with+adaptive+determination+of+number+and+degree+of+neighbor%D7%B3s+similarity&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Saffari%2C+Seyed+Alireza&rft.au=Ebrahimi-Moghadam%2C+Abbas&rft.date=2015-04-04&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=153&rft.spage=41&rft.epage=53&rft_id=info:doi/10.1016%2Fj.neucom.2014.11.053&rft.externalDocID=S0925231214016476 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |