Spin c -structures and Dirac operators on contact manifolds
Any contact metric manifold has a Spin c -structure. Thus, we study on any Spin c -spinor bundle of a contact metric manifold, Dirac type operators associated to the generalized Tanaka–Webster connection. Bochner–Lichnerowicz type formulas are derived in this setting and vanishing theorems are obtai...
Uloženo v:
| Vydáno v: | Differential geometry and its applications Ročník 22; číslo 2; s. 229 - 252 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.03.2005
|
| Témata: | |
| ISSN: | 0926-2245, 1872-6984 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Any contact metric manifold has a
Spin
c
-structure. Thus, we study on any
Spin
c
-spinor bundle of a contact metric manifold, Dirac type operators associated to the generalized Tanaka–Webster connection. Bochner–Lichnerowicz type formulas are derived in this setting and vanishing theorems are obtained. |
|---|---|
| ISSN: | 0926-2245 1872-6984 |
| DOI: | 10.1016/j.difgeo.2005.01.003 |