Traffic Image Analysis Based on Stacked Denoising Autoencoder Neural Network
This study aims to explore major neural network models - Stacked Denoising Autoencoder (SDAE), Deep Belief Network (DBN), Backpropagation - that have recently garnered attention and propose the most suitable and reliable artificial neural network model for real-time road traffic information collecti...
Saved in:
| Published in: | Journal of Innovation Information Technology and Application Vol. 5; no. 2; pp. 183 - 192 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Pusat Penelitian dan Pengabdian Masyarakat (P3M), Politeknik Negeri Cilacap
29.12.2023
|
| Subjects: | |
| ISSN: | 2716-0858, 2715-9248 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This study aims to explore major neural network models - Stacked Denoising Autoencoder (SDAE), Deep Belief Network (DBN), Backpropagation - that have recently garnered attention and propose the most suitable and reliable artificial neural network model for real-time road traffic information collection. In this study, to enhance the reliability of experimental results, numerous experiments were conducted under identical conditions (such as parameter values and network configuration) by setting different initial values for the weight vector. The results of the experiments were statistically validated to draw conclusions. The research results showed that the SDAE model exhibited the most superior performance, while the accuracy of the DBN was somewhat lower compared to the SDAE model. On the other hand, the Backpropagation model demonstrated a relatively low predictive accuracy compared to both models, particularly showing a significant influence of the initial values |
|---|---|
| AbstractList | This study aims to explore major neural network models - Stacked Denoising Autoencoder (SDAE), Deep Belief Network (DBN), Backpropagation - that have recently garnered attention and propose the most suitable and reliable artificial neural network model for real-time road traffic information collection. In this study, to enhance the reliability of experimental results, numerous experiments were conducted under identical conditions (such as parameter values and network configuration) by setting different initial values for the weight vector. The results of the experiments were statistically validated to draw conclusions. The research results showed that the SDAE model exhibited the most superior performance, while the accuracy of the DBN was somewhat lower compared to the SDAE model. On the other hand, the Backpropagation model demonstrated a relatively low predictive accuracy compared to both models, particularly showing a significant influence of the initial values |
| Author | Kim, Daehyon |
| Author_xml | – sequence: 1 givenname: Daehyon surname: Kim fullname: Kim, Daehyon |
| BookMark | eNo9kMtOwzAURC1UJErpB7DLD6Rc27HjLEt5VapgQVlb145duY8Y2SmIv6cPxGpGszgjnWsy6GLnCLmlMOGiqeFuHbrQ4-RLBDZhlPMLMmQ1FWXDKjU4dVmCEuqKjHNeAwBTtWTQDMlimdD7YIv5DleumHa4_ckhF_eYXVvErnjv0W4O9cF1MeTQrYrpvo-us7F1qXh1-4TbQ_TfMW1uyKXHbXbjvxyRj6fH5eylXLw9z2fTRWmpoLyUrGJeSgMcsAZqRAPCOMGNEapVrkU0smo8ZyB9S6VxBqwBSRuneO255SMyP3PbiGv9mcIO04-OGPRpiGmlMfXBbp32aKyqwR-eWWV8hapx1lSIrgWLNR5Y9MyyKeacnP_nUdAnu_psVx_t6qNd_gtxSHIV |
| Cites_doi | 10.1080/714040816 10.1080/00207169908804800 10.1016/j.eswa.2021.115037 10.1109/ICDMW.2016.0041 10.47116/apjcri.2020.11.16 10.14257/AJMAHS.2016.05.22 10.1080/10286600802252719 10.14569/IJACSA.2023.0140933 10.1016/j.eswa.2023.120975 10.1162/neco.2006.18.7.1527 10.21742/apjcri.2018.12.07 10.1080/0020716042000301806 10.1109/TPWRS.2016.2628873 10.1109/LGRS.2018.2861218 10.1126/science.1127647 10.7551/mitpress/7503.003.0024 10.1109/TASL.2011.2109382 10.26599/TST.2023.9010050 10.1080/00207160410001684325 10.1080/15472450.2020.1742121 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.35970/jinita.v5i2.2133 |
| DatabaseName | CrossRef Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2715-9248 |
| EndPage | 192 |
| ExternalDocumentID | oai_doaj_org_article_fabc870fc1524bf4a89ecb4aaed0ca7a 10_35970_jinita_v5i2_2133 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E |
| ID | FETCH-LOGICAL-c1513-6242f66b030a701b5905be53bb58d8edaab649f3206fd16beb0cb0619e837f3c3 |
| IEDL.DBID | DOA |
| ISSN | 2716-0858 |
| IngestDate | Fri Oct 03 12:43:01 EDT 2025 Sat Nov 29 02:56:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1513-6242f66b030a701b5905be53bb58d8edaab649f3206fd16beb0cb0619e837f3c3 |
| OpenAccessLink | https://doaj.org/article/fabc870fc1524bf4a89ecb4aaed0ca7a |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fabc870fc1524bf4a89ecb4aaed0ca7a crossref_primary_10_35970_jinita_v5i2_2133 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-29 |
| PublicationDateYYYYMMDD | 2023-12-29 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Innovation Information Technology and Application |
| PublicationYear | 2023 |
| Publisher | Pusat Penelitian dan Pengabdian Masyarakat (P3M), Politeknik Negeri Cilacap |
| Publisher_xml | – name: Pusat Penelitian dan Pengabdian Masyarakat (P3M), Politeknik Negeri Cilacap |
| References | 6010 6021 6020 6012 6023 6011 6022 6014 6025 6013 6024 6005 6016 6027 6015 6026 6007 6018 6006 6017 6028 6009 6008 6019 |
| References_xml | – ident: 6008 doi: 10.1080/714040816 – ident: 6028 – ident: 6025 doi: 10.1080/00207169908804800 – ident: 6010 doi: 10.1016/j.eswa.2021.115037 – ident: 6019 doi: 10.1109/ICDMW.2016.0041 – ident: 6011 – ident: 6027 doi: 10.47116/apjcri.2020.11.16 – ident: 6005 doi: 10.14257/AJMAHS.2016.05.22 – ident: 6009 doi: 10.1080/10286600802252719 – ident: 6013 – ident: 6007 doi: 10.14569/IJACSA.2023.0140933 – ident: 6017 doi: 10.1016/j.eswa.2023.120975 – ident: 6021 doi: 10.1162/neco.2006.18.7.1527 – ident: 6023 doi: 10.21742/apjcri.2018.12.07 – ident: 6024 doi: 10.1080/0020716042000301806 – ident: 6014 doi: 10.1109/TPWRS.2016.2628873 – ident: 6015 doi: 10.1109/LGRS.2018.2861218 – ident: 6012 doi: 10.1126/science.1127647 – ident: 6018 doi: 10.7551/mitpress/7503.003.0024 – ident: 6022 doi: 10.1109/TASL.2011.2109382 – ident: 6016 doi: 10.26599/TST.2023.9010050 – ident: 6020 – ident: 6026 doi: 10.1080/00207160410001684325 – ident: 6006 doi: 10.1080/15472450.2020.1742121 |
| SSID | ssj0002876209 |
| Score | 1.8555652 |
| Snippet | This study aims to explore major neural network models - Stacked Denoising Autoencoder (SDAE), Deep Belief Network (DBN), Backpropagation - that have recently... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 183 |
| SubjectTerms | autoencoding backpropagation deep belief network neural network stacked denoising |
| Title | Traffic Image Analysis Based on Stacked Denoising Autoencoder Neural Network |
| URI | https://doaj.org/article/fabc870fc1524bf4a89ecb4aaed0ca7a |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2715-9248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002876209 issn: 2716-0858 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2715-9248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002876209 issn: 2716-0858 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1Fe8sCE5NaJ4yQeW2gFUqkYQOoW-SmlEgkqbUd-O-c4RWViYckQRXb0nc_fnXP5DqFblXMuaeQI41qThOmU5CLOiBRZpJwSWgfJ_Ek2neazmXjZavXla8KCPHAAru-k0rCmnAaiSZRLZC6sVomU1lAtsyY0opnYSqbmzZEROHlT3xFDQkAgrsjDJ00GATTtz0vwF9lb8zLuxRFjv0hpS7u_IZnxIdpvo0M8CG91hHZsdYwONp0XcOuIJ2gCFOO1H_DTO-wHeKMsgofASQbXFYYYEtzT4Adb1aU_DsCD1bL2opUGxvGKHDDNNJSAn6K38ej1_pG0fREIgBAx4n_pcGmqwD9lRiPFBeXKcqYUz01ujZQqTYRjMU2diVJlFdUKeFtYyEYd0-wMdaq6sucI0ySxQJNUMwaJSGqENRxs5YQF2IVzXXS3Aab4CPIXBaQNDYpFQLHwKBYexS4aeuh-HvTK1c0NsGfR2rP4y54X_zHIJdrzbeF92UksrlBnuVjZa7Sr18vyc3HTLBW4Pn-NvgGWrMgC |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+Image+Analysis+Based+on+Stacked+Denoising+Autoencoder+Neural+Network&rft.jtitle=Journal+of+Innovation+Information+Technology+and+Application&rft.au=Kim%2C+Daehyon&rft.date=2023-12-29&rft.issn=2716-0858&rft.eissn=2715-9248&rft.volume=5&rft.issue=2&rft.spage=183&rft.epage=192&rft_id=info:doi/10.35970%2Fjinita.v5i2.2133&rft.externalDBID=n%2Fa&rft.externalDocID=10_35970_jinita_v5i2_2133 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2716-0858&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2716-0858&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2716-0858&client=summon |