Traffic Image Analysis Based on Stacked Denoising Autoencoder Neural Network

This study aims to explore major neural network models - Stacked Denoising Autoencoder (SDAE), Deep Belief Network (DBN), Backpropagation - that have recently garnered attention and propose the most suitable and reliable artificial neural network model for real-time road traffic information collecti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Innovation Information Technology and Application Vol. 5; no. 2; pp. 183 - 192
Main Author: Kim, Daehyon
Format: Journal Article
Language:English
Published: Pusat Penelitian dan Pengabdian Masyarakat (P3M), Politeknik Negeri Cilacap 29.12.2023
Subjects:
ISSN:2716-0858, 2715-9248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study aims to explore major neural network models - Stacked Denoising Autoencoder (SDAE), Deep Belief Network (DBN), Backpropagation - that have recently garnered attention and propose the most suitable and reliable artificial neural network model for real-time road traffic information collection. In this study, to enhance the reliability of experimental results, numerous experiments were conducted under identical conditions (such as parameter values and network configuration) by setting different initial values for the weight vector. The results of the experiments were statistically validated to draw conclusions. The research results showed that the SDAE model exhibited the most superior performance, while the accuracy of the DBN was somewhat lower compared to the SDAE model. On the other hand, the Backpropagation model demonstrated a relatively low predictive accuracy compared to both models, particularly showing a significant influence of the initial values
AbstractList This study aims to explore major neural network models - Stacked Denoising Autoencoder (SDAE), Deep Belief Network (DBN), Backpropagation - that have recently garnered attention and propose the most suitable and reliable artificial neural network model for real-time road traffic information collection. In this study, to enhance the reliability of experimental results, numerous experiments were conducted under identical conditions (such as parameter values and network configuration) by setting different initial values for the weight vector. The results of the experiments were statistically validated to draw conclusions. The research results showed that the SDAE model exhibited the most superior performance, while the accuracy of the DBN was somewhat lower compared to the SDAE model. On the other hand, the Backpropagation model demonstrated a relatively low predictive accuracy compared to both models, particularly showing a significant influence of the initial values
Author Kim, Daehyon
Author_xml – sequence: 1
  givenname: Daehyon
  surname: Kim
  fullname: Kim, Daehyon
BookMark eNo9kMtOwzAURC1UJErpB7DLD6Rc27HjLEt5VapgQVlb145duY8Y2SmIv6cPxGpGszgjnWsy6GLnCLmlMOGiqeFuHbrQ4-RLBDZhlPMLMmQ1FWXDKjU4dVmCEuqKjHNeAwBTtWTQDMlimdD7YIv5DleumHa4_ckhF_eYXVvErnjv0W4O9cF1MeTQrYrpvo-us7F1qXh1-4TbQ_TfMW1uyKXHbXbjvxyRj6fH5eylXLw9z2fTRWmpoLyUrGJeSgMcsAZqRAPCOMGNEapVrkU0smo8ZyB9S6VxBqwBSRuneO255SMyP3PbiGv9mcIO04-OGPRpiGmlMfXBbp32aKyqwR-eWWV8hapx1lSIrgWLNR5Y9MyyKeacnP_nUdAnu_psVx_t6qNd_gtxSHIV
Cites_doi 10.1080/714040816
10.1080/00207169908804800
10.1016/j.eswa.2021.115037
10.1109/ICDMW.2016.0041
10.47116/apjcri.2020.11.16
10.14257/AJMAHS.2016.05.22
10.1080/10286600802252719
10.14569/IJACSA.2023.0140933
10.1016/j.eswa.2023.120975
10.1162/neco.2006.18.7.1527
10.21742/apjcri.2018.12.07
10.1080/0020716042000301806
10.1109/TPWRS.2016.2628873
10.1109/LGRS.2018.2861218
10.1126/science.1127647
10.7551/mitpress/7503.003.0024
10.1109/TASL.2011.2109382
10.26599/TST.2023.9010050
10.1080/00207160410001684325
10.1080/15472450.2020.1742121
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.35970/jinita.v5i2.2133
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2715-9248
EndPage 192
ExternalDocumentID oai_doaj_org_article_fabc870fc1524bf4a89ecb4aaed0ca7a
10_35970_jinita_v5i2_2133
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c1513-6242f66b030a701b5905be53bb58d8edaab649f3206fd16beb0cb0619e837f3c3
IEDL.DBID DOA
ISSN 2716-0858
IngestDate Fri Oct 03 12:43:01 EDT 2025
Sat Nov 29 02:56:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1513-6242f66b030a701b5905be53bb58d8edaab649f3206fd16beb0cb0619e837f3c3
OpenAccessLink https://doaj.org/article/fabc870fc1524bf4a89ecb4aaed0ca7a
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_fabc870fc1524bf4a89ecb4aaed0ca7a
crossref_primary_10_35970_jinita_v5i2_2133
PublicationCentury 2000
PublicationDate 2023-12-29
PublicationDateYYYYMMDD 2023-12-29
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-29
  day: 29
PublicationDecade 2020
PublicationTitle Journal of Innovation Information Technology and Application
PublicationYear 2023
Publisher Pusat Penelitian dan Pengabdian Masyarakat (P3M), Politeknik Negeri Cilacap
Publisher_xml – name: Pusat Penelitian dan Pengabdian Masyarakat (P3M), Politeknik Negeri Cilacap
References 6010
6021
6020
6012
6023
6011
6022
6014
6025
6013
6024
6005
6016
6027
6015
6026
6007
6018
6006
6017
6028
6009
6008
6019
References_xml – ident: 6008
  doi: 10.1080/714040816
– ident: 6028
– ident: 6025
  doi: 10.1080/00207169908804800
– ident: 6010
  doi: 10.1016/j.eswa.2021.115037
– ident: 6019
  doi: 10.1109/ICDMW.2016.0041
– ident: 6011
– ident: 6027
  doi: 10.47116/apjcri.2020.11.16
– ident: 6005
  doi: 10.14257/AJMAHS.2016.05.22
– ident: 6009
  doi: 10.1080/10286600802252719
– ident: 6013
– ident: 6007
  doi: 10.14569/IJACSA.2023.0140933
– ident: 6017
  doi: 10.1016/j.eswa.2023.120975
– ident: 6021
  doi: 10.1162/neco.2006.18.7.1527
– ident: 6023
  doi: 10.21742/apjcri.2018.12.07
– ident: 6024
  doi: 10.1080/0020716042000301806
– ident: 6014
  doi: 10.1109/TPWRS.2016.2628873
– ident: 6015
  doi: 10.1109/LGRS.2018.2861218
– ident: 6012
  doi: 10.1126/science.1127647
– ident: 6018
  doi: 10.7551/mitpress/7503.003.0024
– ident: 6022
  doi: 10.1109/TASL.2011.2109382
– ident: 6016
  doi: 10.26599/TST.2023.9010050
– ident: 6020
– ident: 6026
  doi: 10.1080/00207160410001684325
– ident: 6006
  doi: 10.1080/15472450.2020.1742121
SSID ssj0002876209
Score 1.8555652
Snippet This study aims to explore major neural network models - Stacked Denoising Autoencoder (SDAE), Deep Belief Network (DBN), Backpropagation - that have recently...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 183
SubjectTerms autoencoding
backpropagation
deep belief network
neural network
stacked denoising
Title Traffic Image Analysis Based on Stacked Denoising Autoencoder Neural Network
URI https://doaj.org/article/fabc870fc1524bf4a89ecb4aaed0ca7a
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2715-9248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002876209
  issn: 2716-0858
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2715-9248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002876209
  issn: 2716-0858
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1Fe8sCE5NaJ4yQeW2gFUqkYQOoW-SmlEgkqbUd-O-c4RWViYckQRXb0nc_fnXP5DqFblXMuaeQI41qThOmU5CLOiBRZpJwSWgfJ_Ek2neazmXjZavXla8KCPHAAru-k0rCmnAaiSZRLZC6sVomU1lAtsyY0opnYSqbmzZEROHlT3xFDQkAgrsjDJ00GATTtz0vwF9lb8zLuxRFjv0hpS7u_IZnxIdpvo0M8CG91hHZsdYwONp0XcOuIJ2gCFOO1H_DTO-wHeKMsgofASQbXFYYYEtzT4Adb1aU_DsCD1bL2opUGxvGKHDDNNJSAn6K38ej1_pG0fREIgBAx4n_pcGmqwD9lRiPFBeXKcqYUz01ujZQqTYRjMU2diVJlFdUKeFtYyEYd0-wMdaq6sucI0ySxQJNUMwaJSGqENRxs5YQF2IVzXXS3Aab4CPIXBaQNDYpFQLHwKBYexS4aeuh-HvTK1c0NsGfR2rP4y54X_zHIJdrzbeF92UksrlBnuVjZa7Sr18vyc3HTLBW4Pn-NvgGWrMgC
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+Image+Analysis+Based+on+Stacked+Denoising+Autoencoder+Neural+Network&rft.jtitle=Journal+of+Innovation+Information+Technology+and+Application&rft.au=Kim%2C+Daehyon&rft.date=2023-12-29&rft.issn=2716-0858&rft.eissn=2715-9248&rft.volume=5&rft.issue=2&rft.spage=183&rft.epage=192&rft_id=info:doi/10.35970%2Fjinita.v5i2.2133&rft.externalDBID=n%2Fa&rft.externalDocID=10_35970_jinita_v5i2_2133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2716-0858&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2716-0858&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2716-0858&client=summon