Solving Combinatorial Optimization Problems on Quantum Computers
Introduction. Quantum computers provide several times faster solutions to several NP-hard combinatorial optimization problems in comparison with computing clusters. The trend of doubling the number of qubits of quantum computers every year suggests the existence of an analog of Moore's law for...
Uložené v:
| Vydané v: | Kìbernetika ta komp'ûternì tehnologìï (Online) číslo 2; s. 5 - 13 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English Ukrainian |
| Vydavateľské údaje: |
V.M. Glushkov Institute of Cybernetics
24.07.2020
|
| Predmet: | |
| ISSN: | 2707-4501, 2707-451X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Introduction. Quantum computers provide several times faster solutions to several NP-hard combinatorial optimization problems in comparison with computing clusters. The trend of doubling the number of qubits of quantum computers every year suggests the existence of an analog of Moore's law for quantum computers, which means that soon they will also be able to get a significant acceleration of solving many applied large-scale problems.
The purpose of the article is to review methods for creating algorithms of quantum computer mathematics for combinatorial optimization problems and to analyze the influence of the qubit-to-qubit coupling and connections strength on the performance of quantum data processing.
Results. The article offers approaches to the classification of algorithms for solving these problems from the perspective of quantum computer mathematics. It is shown that the number and strength of connections between qubits affect the dimensionality of problems solved by algorithms of quantum computer mathematics. It is proposed to consider two approaches to calculating combinatorial optimization problems on quantum computers: universal, using quantum gates, and specialized, based on a parameterization of physical processes. Examples of constructing a half-adder for two qubits of an IBM quantum processor and an example of solving the problem of finding the maximum independent set for the IBM and D-wave quantum computers are given.
Conclusions. Today, quantum computers are available online through cloud services for research and commercial use. At present, quantum processors do not have enough qubits to replace semiconductor computers in universal computing. The search for a solution to a combinatorial optimization problem is performed by achieving the minimum energy of the system of coupled qubits, on which the task is mapped, and the data are the initial conditions. Approaches to solving combinatorial optimization problems on quantum computers are considered and the results of solving the problem of finding the maximum independent set on the IBM and D-wave quantum computers are given.
Keywords: quantum computer, quantum computer mathematics, qubit, maximal independent set for a graph. |
|---|---|
| AbstractList | Introduction. Quantum computers provide several times faster solutions to several NP-hard combinatorial optimization problems in comparison with computing clusters. The trend of doubling the number of qubits of quantum computers every year suggests the existence of an analog of Moore's law for quantum computers, which means that soon they will also be able to get a significant acceleration of solving many applied large-scale problems.
The purpose of the article is to review methods for creating algorithms of quantum computer mathematics for combinatorial optimization problems and to analyze the influence of the qubit-to-qubit coupling and connections strength on the performance of quantum data processing.
Results. The article offers approaches to the classification of algorithms for solving these problems from the perspective of quantum computer mathematics. It is shown that the number and strength of connections between qubits affect the dimensionality of problems solved by algorithms of quantum computer mathematics. It is proposed to consider two approaches to calculating combinatorial optimization problems on quantum computers: universal, using quantum gates, and specialized, based on a parameterization of physical processes. Examples of constructing a half-adder for two qubits of an IBM quantum processor and an example of solving the problem of finding the maximum independent set for the IBM and D-wave quantum computers are given.
Conclusions. Today, quantum computers are available online through cloud services for research and commercial use. At present, quantum processors do not have enough qubits to replace semiconductor computers in universal computing. The search for a solution to a combinatorial optimization problem is performed by achieving the minimum energy of the system of coupled qubits, on which the task is mapped, and the data are the initial conditions. Approaches to solving combinatorial optimization problems on quantum computers are considered and the results of solving the problem of finding the maximum independent set on the IBM and D-wave quantum computers are given.
Keywords: quantum computer, quantum computer mathematics, qubit, maximal independent set for a graph. Introduction. Quantum computers provide several times faster solutions to several NP-hard combinatorial optimization problems in comparison with computing clusters. The trend of doubling the number of qubits of quantum computers every year suggests the existence of an analog of Moore's law for quantum computers, which means that soon they will also be able to get a significant acceleration of solving many applied large-scale problems. The purpose of the article is to review methods for creating algorithms of quantum computer mathematics for combinatorial optimization problems and to analyze the influence of the qubit-to-qubit coupling and connections strength on the performance of quantum data processing. Results. The article offers approaches to the classification of algorithms for solving these problems from the perspective of quantum computer mathematics. It is shown that the number and strength of connections between qubits affect the dimensionality of problems solved by algorithms of quantum computer mathematics. It is proposed to consider two approaches to calculating combinatorial optimization problems on quantum computers: universal, using quantum gates, and specialized, based on a parameterization of physical processes. Examples of constructing a half-adder for two qubits of an IBM quantum processor and an example of solving the problem of finding the maximum independent set for the IBM and D-wave quantum computers are given. Conclusions. Today, quantum computers are available online through cloud services for research and commercial use. At present, quantum processors do not have enough qubits to replace semiconductor computers in universal computing. The search for a solution to a combinatorial optimization problem is performed by achieving the minimum energy of the system of coupled qubits, on which the task is mapped, and the data are the initial conditions. Approaches to solving combinatorial optimization problems on quantum computers are considered and the results of solving the problem of finding the maximum independent set on the IBM and D-wave quantum computers are given. |
| Author | Korolyov, Vyacheslav Khodzinskyi, Oleksandr |
| Author_xml | – sequence: 1 givenname: Vyacheslav orcidid: 0000-0003-1143-5846 surname: Korolyov fullname: Korolyov, Vyacheslav organization: V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine – sequence: 2 givenname: Oleksandr surname: Khodzinskyi fullname: Khodzinskyi, Oleksandr organization: V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine |
| BookMark | eNo9kF1LwzAYhYNMcM79AO_6B1rz5qNJ7pThx2AwRQXvQpKmI6NtRtoK-uvdh-zqHA6H5-K5RpMudh6hW8AFZYSoOyKwyBmHr4LgghRwgabnaXLuGK7QvO-3GGOiAFPJp-j-PTbfodtki9ja0JkhpmCabL0bQht-zRBil72maBvf9tm-v42mG8b2cN-Ng0_9DbqsTdP7-X_O0OfT48fiJV-tn5eLh1XugAPkUCpnaorritVYWVVKDlZIJZziXEkwdUUtsEphb0jNKyeMICB4yTzj0ik6Q8sTt4pmq3cptCb96GiCPg4xbbRJQ3CN19KWTHllrPAV484pQUFVck-nXFgr9iw4sVyKfZ98feYB1kej-qBMH_RpgjXRQP8A-bZqYQ |
| Cites_doi | 10.1002/9780470496916 10.15407/usim.2019.02.016 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.34229/2707-451X.20.2.1 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2707-451X |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_8b649e9ab7ed45cc97319d814d357bb7 10_34229_2707_451X_20_2_1 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c1511-169caf30fd4f09b96851b7897c955981afd3b14d90ea2f5dc7a7217564e458c93 |
| IEDL.DBID | DOA |
| ISSN | 2707-4501 |
| IngestDate | Fri Oct 03 12:40:53 EDT 2025 Sat Nov 29 04:41:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English Ukrainian |
| License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1511-169caf30fd4f09b96851b7897c955981afd3b14d90ea2f5dc7a7217564e458c93 |
| ORCID | 0000-0003-1143-5846 |
| OpenAccessLink | https://doaj.org/article/8b649e9ab7ed45cc97319d814d357bb7 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8b649e9ab7ed45cc97319d814d357bb7 crossref_primary_10_34229_2707_451X_20_2_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-7-24 |
| PublicationDateYYYYMMDD | 2020-07-24 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-7-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | Kìbernetika ta komp'ûternì tehnologìï (Online) |
| PublicationYear | 2020 |
| Publisher | V.M. Glushkov Institute of Cybernetics |
| Publisher_xml | – name: V.M. Glushkov Institute of Cybernetics |
| References | ref12 ref11 ref10 ref0 ref2 ref1 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref1 – ident: ref4 – ident: ref2 – ident: ref11 doi: 10.1002/9780470496916 – ident: ref5 – ident: ref6 – ident: ref7 – ident: ref9 – ident: ref8 – ident: ref3 doi: 10.15407/usim.2019.02.016 – ident: ref0 – ident: ref10 – ident: ref12 |
| SSID | ssj0002910385 ssib044750725 |
| Score | 2.1131132 |
| Snippet | Introduction. Quantum computers provide several times faster solutions to several NP-hard combinatorial optimization problems in comparison with computing... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 5 |
| SubjectTerms | maximal independent set for a graph quantum computer quantum computer mathematics qubit |
| Title | Solving Combinatorial Optimization Problems on Quantum Computers |
| URI | https://doaj.org/article/8b649e9ab7ed45cc97319d814d357bb7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2707-451X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002910385 issn: 2707-4501 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2707-451X dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044750725 issn: 2707-4501 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA1SXLgR6wPri1m4UGHaJJNMkp0PLK5qRYXuQl4DgrbSaf1-b2ZSqSs37oYwDMO5N7n3zCTnIHReqZK5gvHcMINz5kmZW899LknwnENFwtg0ZhNiNJKTiRqvWX3FPWGtPHAL3EDakqmgjBXBM-5ctFpSXhLmCy6sbc6RQ9ezRqYgk6KKHRYpU-OaTFUUAo_7GanAUegbk_YXZ8EoVYM0SCZAGPu0T34VqTUt_6boDHfQduoWs5v2LbtoI0x3UTfNxzq7SKLRl3vo-nn2Hr8NZDDBgexGKg2ZlT3CivCRjlpm49Y8ps7g-mkJkC4_spWrQ72PXof3L3cPeXJHyB1U6ejurJypClx5VmFlVQm9kxVSCRdF5SQxlS8swKRwMLTi3gkDbE_wkgXGpVPFAepMZ9NwiLLS8kCZp9A7QdgsNVY6bHnljAoSepgeulrBoT9bEQwN5KHBTkfsdMROU6ypJj10GwH7uTHqVzcDEFWdoqr_iurRfzzkGG3RyI4htpSdoM5ivgynaNN9Ld7q-VmTMN-lGb94 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Combinatorial+Optimization+Problems+on+Quantum+Computers&rft.jtitle=K%C3%ACbernetika+ta+komp%27%C3%BBtern%C3%AC+tehnolog%C3%AC%C3%AF+%28Online%29&rft.au=Vyacheslav+Korolyov&rft.au=Oleksandr+Khodzinskyi&rft.date=2020-07-24&rft.pub=V.M.+Glushkov+Institute+of+Cybernetics&rft.issn=2707-4501&rft.eissn=2707-451X&rft.issue=2&rft.spage=5&rft.epage=13&rft_id=info:doi/10.34229%2F2707-451X.20.2.1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8b649e9ab7ed45cc97319d814d357bb7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2707-4501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2707-4501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2707-4501&client=summon |