Lightweight BiLSTM-Attention Model Using GloVe for Multi-Class Mental Health Classification on Reddit

Mental health issues such as depression, stress, anxiety, and personality disorders are increasingly prevalent, particularly within online communities. This study proposes a lightweight and efficient multi-class classification framework to identify five mental health conditions using Reddit user-gen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Applied Informatics and Computing Ročník 9; číslo 5; s. 2899 - 2911
Hlavní autoři: Branwen, Devin, Emigawaty, Emigawaty
Médium: Journal Article
Jazyk:angličtina
Vydáno: Politeknik Negeri Batam 21.10.2025
Témata:
ISSN:2548-6861, 2548-6861
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Mental health issues such as depression, stress, anxiety, and personality disorders are increasingly prevalent, particularly within online communities. This study proposes a lightweight and efficient multi-class classification framework to identify five mental health conditions using Reddit user-generated posts. While previous studies predominantly rely on conventional CNNs or standard machine learning techniques for binary classification, our work introduces a novel Bidirectional Long Short-Term Memory (BiLSTM) model integrated with an attention mechanism. The architecture is further enhanced by synonym-based data augmentation using the WordNet lexical database, which improves semantic diversity and enhances model robustness, particularly for underrepresented classes. Unlike prior works that focus narrowly on binary classification or employ transformer-based models with high computational demands, our model offers a lightweight, high-performance architecture optimized for multi-class detection and real-world deployment. Experimental results demonstrate that the proposed model achieves a peak validation accuracy of 95.02%, along with precision 95.08%, recall 95.02%, and F1-scores of 95.03%. These findings support the advancement of efficient AI-driven diagnostic systems in mental health analytics and lay the groundwork for future integration into mobile or resource-constrained platforms.
AbstractList Mental health issues such as depression, stress, anxiety, and personality disorders are increasingly prevalent, particularly within online communities. This study proposes a lightweight and efficient multi-class classification framework to identify five mental health conditions using Reddit user-generated posts. While previous studies predominantly rely on conventional CNNs or standard machine learning techniques for binary classification, our work introduces a novel Bidirectional Long Short-Term Memory (BiLSTM) model integrated with an attention mechanism. The architecture is further enhanced by synonym-based data augmentation using the WordNet lexical database, which improves semantic diversity and enhances model robustness, particularly for underrepresented classes. Unlike prior works that focus narrowly on binary classification or employ transformer-based models with high computational demands, our model offers a lightweight, high-performance architecture optimized for multi-class detection and real-world deployment. Experimental results demonstrate that the proposed model achieves a peak validation accuracy of 95.02%, along with precision 95.08%, recall 95.02%, and F1-scores of 95.03%. These findings support the advancement of efficient AI-driven diagnostic systems in mental health analytics and lay the groundwork for future integration into mobile or resource-constrained platforms.
Author Branwen, Devin
Emigawaty, Emigawaty
Author_xml – sequence: 1
  givenname: Devin
  surname: Branwen
  fullname: Branwen, Devin
– sequence: 2
  givenname: Emigawaty
  surname: Emigawaty
  fullname: Emigawaty, Emigawaty
BookMark eNpNkN9LwzAQx4NMcM69-5h_oDNp86N9nEO3QYegm6_h2iRbRmykqYr_vV0nIhx3x5e7z8PnGo2a0BiEbimZZSSX9O4Irp59Fo7PKKFcXqBxylmeiFzQ0b_9Ck1jPBJC0oKmIqVjZEq3P3Rf5tTxvStftptk3nWm6Vxo8CZo4_EuumaPlz68GmxDizcfvnPJwkOMeNNfgscrA7474CFz1tUwvPf1bLR23Q26tOCjmf7OCdo9PmwXq6R8Wq4X8zKpKStkwrSpUm0zkJnlupZaZpJaqFlGjRXMpozpQnPgKaSsKqQg2pgcSNVPTSqWTdD6zNUBjuq9dW_QfqsATg1BaPcK2s7V3qi8xwgrKkFzzTjneSWpyQSRQJglGnoWObPqNsTYGvvHo0QN1tXJujpZV4P17AfJmHjO
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.30871/jaic.v9i5.10157
DatabaseName CrossRef
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2548-6861
EndPage 2911
ExternalDocumentID oai_doaj_org_article_85a56f6b618d45558b71e3607a04f0da
10_30871_jaic_v9i5_10157
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c1497-4deb2df3a73f5dc7d7371fac431ef64f244d9d5a52a24b9760dee8a0b0ded0b43
IEDL.DBID DOA
ISSN 2548-6861
IngestDate Mon Dec 01 19:26:01 EST 2025
Thu Nov 27 00:42:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 5
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1497-4deb2df3a73f5dc7d7371fac431ef64f244d9d5a52a24b9760dee8a0b0ded0b43
OpenAccessLink https://doaj.org/article/85a56f6b618d45558b71e3607a04f0da
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_85a56f6b618d45558b71e3607a04f0da
crossref_primary_10_30871_jaic_v9i5_10157
PublicationCentury 2000
PublicationDate 2025-10-21
PublicationDateYYYYMMDD 2025-10-21
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-21
  day: 21
PublicationDecade 2020
PublicationTitle Journal of Applied Informatics and Computing
PublicationYear 2025
Publisher Politeknik Negeri Batam
Publisher_xml – name: Politeknik Negeri Batam
SSID ssj0002912621
Score 1.9254608
Snippet Mental health issues such as depression, stress, anxiety, and personality disorders are increasingly prevalent, particularly within online communities. This...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 2899
SubjectTerms bi-directional lstm
mental health
natural language processing
social media
text classification
Title Lightweight BiLSTM-Attention Model Using GloVe for Multi-Class Mental Health Classification on Reddit
URI https://doaj.org/article/85a56f6b618d45558b71e3607a04f0da
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2548-6861
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002912621
  issn: 2548-6861
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwHA0yPHgRRcX5RQ5ePETTfDbHTZwe5hCdslvJJxTGJrPOf98kndKbF6FQCKWU9yv9vdck7wFwqYjWVHCOIrVliAnLkVHWIoeD0yI52IWcWjKWk0k5m6mnTtRXWhPW2gO3wN2UXHMRhBFF6VgypzKy8FRgqTEL2GVqhKXqiKn0DSaqIIIU7bxkMr1LPkO1vV6rmifBmrpRpw917PpzXxntgd0NIYSD9kH2wZZfHAA_Tpr5K_-2hMN6_DJ9RIOmaZcmwpRfNod5sh_ez5dvHkbmCfNWWpRDLmHrzAPbPUYwj6UlQbkKMB7P3rm6OQSvo7vp7QPaBCIgG4WMRMxFHewC1ZIG7qx0ksoiaBtJgA-ChdiqnXIRMKIJM5FoYOd9qbGJZ4cNo0egt1gu_DGASgVJOBGO6CixLDXKECkN1SoKEGJxH1z9wFO9t74XVdQLGcoqQVklKKsMZR8ME36_1yXH6jwQ61ht6lj9VceT_7jJKdghKZ839hZSnIFes_r052Dbrpv6Y3WRX5FvUCrAuw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+BiLSTM-Attention+Model+Using+GloVe+for+Multi-Class+Mental+Health+Classification+on+Reddit&rft.jtitle=Journal+of+Applied+Informatics+and+Computing&rft.au=Devin+Branwen&rft.au=Emigawaty+Emigawaty&rft.date=2025-10-21&rft.pub=Politeknik+Negeri+Batam&rft.eissn=2548-6861&rft.volume=9&rft.issue=5&rft.spage=2899&rft.epage=2911&rft_id=info:doi/10.30871%2Fjaic.v9i5.10157&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_85a56f6b618d45558b71e3607a04f0da
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2548-6861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2548-6861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2548-6861&client=summon