Lightweight BiLSTM-Attention Model Using GloVe for Multi-Class Mental Health Classification on Reddit
Mental health issues such as depression, stress, anxiety, and personality disorders are increasingly prevalent, particularly within online communities. This study proposes a lightweight and efficient multi-class classification framework to identify five mental health conditions using Reddit user-gen...
Uloženo v:
| Vydáno v: | Journal of Applied Informatics and Computing Ročník 9; číslo 5; s. 2899 - 2911 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Politeknik Negeri Batam
21.10.2025
|
| Témata: | |
| ISSN: | 2548-6861, 2548-6861 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Mental health issues such as depression, stress, anxiety, and personality disorders are increasingly prevalent, particularly within online communities. This study proposes a lightweight and efficient multi-class classification framework to identify five mental health conditions using Reddit user-generated posts. While previous studies predominantly rely on conventional CNNs or standard machine learning techniques for binary classification, our work introduces a novel Bidirectional Long Short-Term Memory (BiLSTM) model integrated with an attention mechanism. The architecture is further enhanced by synonym-based data augmentation using the WordNet lexical database, which improves semantic diversity and enhances model robustness, particularly for underrepresented classes. Unlike prior works that focus narrowly on binary classification or employ transformer-based models with high computational demands, our model offers a lightweight, high-performance architecture optimized for multi-class detection and real-world deployment. Experimental results demonstrate that the proposed model achieves a peak validation accuracy of 95.02%, along with precision 95.08%, recall 95.02%, and F1-scores of 95.03%. These findings support the advancement of efficient AI-driven diagnostic systems in mental health analytics and lay the groundwork for future integration into mobile or resource-constrained platforms. |
|---|---|
| AbstractList | Mental health issues such as depression, stress, anxiety, and personality disorders are increasingly prevalent, particularly within online communities. This study proposes a lightweight and efficient multi-class classification framework to identify five mental health conditions using Reddit user-generated posts. While previous studies predominantly rely on conventional CNNs or standard machine learning techniques for binary classification, our work introduces a novel Bidirectional Long Short-Term Memory (BiLSTM) model integrated with an attention mechanism. The architecture is further enhanced by synonym-based data augmentation using the WordNet lexical database, which improves semantic diversity and enhances model robustness, particularly for underrepresented classes. Unlike prior works that focus narrowly on binary classification or employ transformer-based models with high computational demands, our model offers a lightweight, high-performance architecture optimized for multi-class detection and real-world deployment. Experimental results demonstrate that the proposed model achieves a peak validation accuracy of 95.02%, along with precision 95.08%, recall 95.02%, and F1-scores of 95.03%. These findings support the advancement of efficient AI-driven diagnostic systems in mental health analytics and lay the groundwork for future integration into mobile or resource-constrained platforms. |
| Author | Branwen, Devin Emigawaty, Emigawaty |
| Author_xml | – sequence: 1 givenname: Devin surname: Branwen fullname: Branwen, Devin – sequence: 2 givenname: Emigawaty surname: Emigawaty fullname: Emigawaty, Emigawaty |
| BookMark | eNpNkN9LwzAQx4NMcM69-5h_oDNp86N9nEO3QYegm6_h2iRbRmykqYr_vV0nIhx3x5e7z8PnGo2a0BiEbimZZSSX9O4Irp59Fo7PKKFcXqBxylmeiFzQ0b_9Ck1jPBJC0oKmIqVjZEq3P3Rf5tTxvStftptk3nWm6Vxo8CZo4_EuumaPlz68GmxDizcfvnPJwkOMeNNfgscrA7474CFz1tUwvPf1bLR23Q26tOCjmf7OCdo9PmwXq6R8Wq4X8zKpKStkwrSpUm0zkJnlupZaZpJaqFlGjRXMpozpQnPgKaSsKqQg2pgcSNVPTSqWTdD6zNUBjuq9dW_QfqsATg1BaPcK2s7V3qi8xwgrKkFzzTjneSWpyQSRQJglGnoWObPqNsTYGvvHo0QN1tXJujpZV4P17AfJmHjO |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.30871/jaic.v9i5.10157 |
| DatabaseName | CrossRef DOAJ: Directory of Open Access Journal (DOAJ) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2548-6861 |
| EndPage | 2911 |
| ExternalDocumentID | oai_doaj_org_article_85a56f6b618d45558b71e3607a04f0da 10_30871_jaic_v9i5_10157 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c1497-4deb2df3a73f5dc7d7371fac431ef64f244d9d5a52a24b9760dee8a0b0ded0b43 |
| IEDL.DBID | DOA |
| ISSN | 2548-6861 |
| IngestDate | Mon Dec 01 19:26:01 EST 2025 Thu Nov 27 00:42:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 5 |
| Language | English |
| License | http://creativecommons.org/licenses/by-sa/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1497-4deb2df3a73f5dc7d7371fac431ef64f244d9d5a52a24b9760dee8a0b0ded0b43 |
| OpenAccessLink | https://doaj.org/article/85a56f6b618d45558b71e3607a04f0da |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_85a56f6b618d45558b71e3607a04f0da crossref_primary_10_30871_jaic_v9i5_10157 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-21 |
| PublicationDateYYYYMMDD | 2025-10-21 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Applied Informatics and Computing |
| PublicationYear | 2025 |
| Publisher | Politeknik Negeri Batam |
| Publisher_xml | – name: Politeknik Negeri Batam |
| SSID | ssj0002912621 |
| Score | 1.9254608 |
| Snippet | Mental health issues such as depression, stress, anxiety, and personality disorders are increasingly prevalent, particularly within online communities. This... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 2899 |
| SubjectTerms | bi-directional lstm mental health natural language processing social media text classification |
| Title | Lightweight BiLSTM-Attention Model Using GloVe for Multi-Class Mental Health Classification on Reddit |
| URI | https://doaj.org/article/85a56f6b618d45558b71e3607a04f0da |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2548-6861 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002912621 issn: 2548-6861 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwHA0yPHgRRcX5RQ5ePETTfDbHTZwe5hCdslvJJxTGJrPOf98kndKbF6FQCKWU9yv9vdck7wFwqYjWVHCOIrVliAnLkVHWIoeD0yI52IWcWjKWk0k5m6mnTtRXWhPW2gO3wN2UXHMRhBFF6VgypzKy8FRgqTEL2GVqhKXqiKn0DSaqIIIU7bxkMr1LPkO1vV6rmifBmrpRpw917PpzXxntgd0NIYSD9kH2wZZfHAA_Tpr5K_-2hMN6_DJ9RIOmaZcmwpRfNod5sh_ez5dvHkbmCfNWWpRDLmHrzAPbPUYwj6UlQbkKMB7P3rm6OQSvo7vp7QPaBCIgG4WMRMxFHewC1ZIG7qx0ksoiaBtJgA-ChdiqnXIRMKIJM5FoYOd9qbGJZ4cNo0egt1gu_DGASgVJOBGO6CixLDXKECkN1SoKEGJxH1z9wFO9t74XVdQLGcoqQVklKKsMZR8ME36_1yXH6jwQ61ht6lj9VceT_7jJKdghKZ839hZSnIFes_r052Dbrpv6Y3WRX5FvUCrAuw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+BiLSTM-Attention+Model+Using+GloVe+for+Multi-Class+Mental+Health+Classification+on+Reddit&rft.jtitle=Journal+of+Applied+Informatics+and+Computing&rft.au=Devin+Branwen&rft.au=Emigawaty+Emigawaty&rft.date=2025-10-21&rft.pub=Politeknik+Negeri+Batam&rft.eissn=2548-6861&rft.volume=9&rft.issue=5&rft.spage=2899&rft.epage=2911&rft_id=info:doi/10.30871%2Fjaic.v9i5.10157&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_85a56f6b618d45558b71e3607a04f0da |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2548-6861&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2548-6861&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2548-6861&client=summon |