Recurrent neural network implementation of digital integrated circuits to mitigate challenges in design verification

Design verification is the dominant stage that consumes the most resources in the digital integrated circuit (IC) design process. Design verification is important because human designers imperfectly convert high-level specifications to low-level circuit implementations using standard cell logic, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of Computer Engineering Research Jg. 10; H. 3; S. 122 - 136
Hauptverfasser: Yeong, Ming Keat, Ho, Eric Tatt Wei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 10.11.2023
ISSN:2412-4281, 2410-9142
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Design verification is the dominant stage that consumes the most resources in the digital integrated circuit (IC) design process. Design verification is important because human designers imperfectly convert high-level specifications to low-level circuit implementations using standard cell logic, which is nonlinear and complex to predict and characterize. The widening process variations in shrinking process technologies while digital designs grow in scale and complexity to the extent of being impossible to fully or intuitively identify all temporal interactions of a specific design. Deep neural networks (DNN) are being progressively integrated into the sophisticated software tool chain and design process flow of digital IC as artificial intelligence can learn relationships and correlations in complex, high-dimensional, and multi-factorial problems. In this work, we propose to apply DNN to implement digital IC to minimize the complexity of digital design verification. We posit that DNN can learn to implement circuit functions directly from high-level specifications without requiring detailed specifications from the designer. Trained neural networks can be implemented on neuromorphic hardware to achieve greater power and compute efficiencies than the conventional standard cell implementation. We demonstrate that over 150 randomly generated finite state machines (FSM) can be learned effectively with Recurrent Neural Network (RNN) comprising Gated Recurrent Units (GRU) with different complexity as indicated by the number of states and inputs to the FSM. Our proposed methodology of learning RNN GRU implementations of FSM demonstrates a way forward to reduce the cost and effort of design verification, ultimately leading towards faster digital IC design cycles.
AbstractList Design verification is the dominant stage that consumes the most resources in the digital integrated circuit (IC) design process. Design verification is important because human designers imperfectly convert high-level specifications to low-level circuit implementations using standard cell logic, which is nonlinear and complex to predict and characterize. The widening process variations in shrinking process technologies while digital designs grow in scale and complexity to the extent of being impossible to fully or intuitively identify all temporal interactions of a specific design. Deep neural networks (DNN) are being progressively integrated into the sophisticated software tool chain and design process flow of digital IC as artificial intelligence can learn relationships and correlations in complex, high-dimensional, and multi-factorial problems. In this work, we propose to apply DNN to implement digital IC to minimize the complexity of digital design verification. We posit that DNN can learn to implement circuit functions directly from high-level specifications without requiring detailed specifications from the designer. Trained neural networks can be implemented on neuromorphic hardware to achieve greater power and compute efficiencies than the conventional standard cell implementation. We demonstrate that over 150 randomly generated finite state machines (FSM) can be learned effectively with Recurrent Neural Network (RNN) comprising Gated Recurrent Units (GRU) with different complexity as indicated by the number of states and inputs to the FSM. Our proposed methodology of learning RNN GRU implementations of FSM demonstrates a way forward to reduce the cost and effort of design verification, ultimately leading towards faster digital IC design cycles.
Author Yeong, Ming Keat
Ho, Eric Tatt Wei
Author_xml – sequence: 1
  givenname: Ming Keat
  orcidid: 0000-0002-5574-4731
  surname: Yeong
  fullname: Yeong, Ming Keat
– sequence: 2
  givenname: Eric Tatt Wei
  orcidid: 0000-0002-7590-1028
  surname: Ho
  fullname: Ho, Eric Tatt Wei
BookMark eNotkE1LxDAYhIMouK579Zw_0Jqk2SQ9yuIXLAii55Kmb-qLbbok2RX_vbV6mmFmmMNzRc7DFICQG85KbqQxt1qVJ86wKqstF2dkJSRnRc2lOF-8KKQw_JJsUsKWSamNVEyvSH4Fd4wRQqYBjtEOs-SvKX5SHA8DjHNhM06BTp522GOeFxgy9NFm6KjD6I6YE80THTFjP6fUfdhhgNBDmqe0g4R9oCeI6NEtZ9fkwtshweZf1-T94f5t91TsXx6fd3f7wnFZi0K5VjDu6k56DlLUpjayUtpr0XZgDddaWV91TBux5e1W2Up2zptWeOWt9qpak_Lv18UppQi-OUQcbfxuOGsWbI1WzYKt-cVW_QBsymVc
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.18488/76.v10i3.3512
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2410-9142
EndPage 136
ExternalDocumentID 10_18488_76_v10i3_3512
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
ID FETCH-LOGICAL-c1492-6cb201c9d4f1e4298984367f72bdea81776af3d078251b56a34dcf8b2f6fa7f63
ISSN 2412-4281
IngestDate Sat Nov 29 03:10:26 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1492-6cb201c9d4f1e4298984367f72bdea81776af3d078251b56a34dcf8b2f6fa7f63
ORCID 0000-0002-7590-1028
0000-0002-5574-4731
OpenAccessLink https://archive.conscientiabeam.com/index.php/76/article/download/3512/7783
PageCount 15
ParticipantIDs crossref_primary_10_18488_76_v10i3_3512
PublicationCentury 2000
PublicationDate 2023-11-10
PublicationDateYYYYMMDD 2023-11-10
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-10
  day: 10
PublicationDecade 2020
PublicationTitle Review of Computer Engineering Research
PublicationYear 2023
SSID ssib044784607
ssib044758409
Score 2.237242
Snippet Design verification is the dominant stage that consumes the most resources in the digital integrated circuit (IC) design process. Design verification is...
SourceID crossref
SourceType Index Database
StartPage 122
Title Recurrent neural network implementation of digital integrated circuits to mitigate challenges in design verification
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2410-9142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044758409
  issn: 2412-4281
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELXKwoELAgECFpAPSBwqL0ns2MlxtVqEhHaFUJH2Fjn-QJEgXZVutaf9IfxaZuI4cYHDcuASta5jtZmn5xl35g0hbzRsIxD3CCa10UxUpmCtaEuWe20yw1tllR6aTajz8-riov60WPyMtTC7b6rvq-vr-vK_mhrGwNhYOvsP5p4WhQF4DUaHK5gdrrcy_Gc8QR80l1CrEizQh0xvLIgcc8Wjl2i7r9gzZNaMsEvTbcwV_pkAPun3bhDgcFgdHDqujMmzmPSxhAeDaUazZaPM91QMEztGpKKHU6pfclgb6OYMP_0IW8OEtHUk6uVKo4CE69IzioKzIU9upjJwEwoGgU5AkYtjGVCt2OfiLMEcT4g1D9XL4x6dB9GUP-i_AjoC-yh5tMuzjh_xcszR3tPZ_m3_m7ISMR7CFRolm-H-Bu-_Q-4WqqyRQ89uTiNXoU4ixsbJe_Dkhur86ceOGqG45Lu9r5T4QIkzs3pIHoxRCD0O6HlEFq5_TLYTcmhADh2RQ_eRQ9eejsihM3JoRA7drmlEDp2RA1NpQA5NkfOEfHl_ujr5wMamHMxAMF0waVrwGU1thc-dQP3-SnCpvCpa63SVKyW15xY9zzJvS6m5sMZXbeGl18pL_pQc9OvePSMUmMBw4_JaGJhUWC19VhdGW4ixa23lc_I2PqbmMmivNH-30Ytbzzwk92eAviQH282Ve0Xumd22-7F5PZj4F6EBf5M
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recurrent+neural+network+implementation+of+digital+integrated+circuits+to+mitigate+challenges+in+design+verification&rft.jtitle=Review+of+Computer+Engineering+Research&rft.au=Yeong%2C+Ming+Keat&rft.au=Ho%2C+Eric+Tatt+Wei&rft.date=2023-11-10&rft.issn=2412-4281&rft.eissn=2410-9142&rft.volume=10&rft.issue=3&rft.spage=122&rft.epage=136&rft_id=info:doi/10.18488%2F76.v10i3.3512&rft.externalDBID=n%2Fa&rft.externalDocID=10_18488_76_v10i3_3512
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2412-4281&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2412-4281&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2412-4281&client=summon