Predicting Arrest Release Outcomes: A Comparative Analysis of Machine Learning Models
This comparative study evaluates machine learning models for predicting arrest release outcomes using 5,226 marijuana possession cases from the Toronto Police Service (1997-2002). The dataset exhibited significant class imbalance, with only 17.1% detention outcomes versus 82.9% releases. After prepr...
Gespeichert in:
| Veröffentlicht in: | al-Tarbiyah wa-al-ʻilm lil-ʻulūm al-insānīyah : majallah ʻilmīyah muḥakkamah taṣduru ʻan Kullīyat al-Tarbiyah lil-ʻUlūm al-Insānīyah fī Jāmiʻat al-Mawṣil Jg. 34; H. 4; S. 62 - 73 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Arabisch Englisch |
| Veröffentlicht: |
College of Education for Pure Sciences
01.10.2025
|
| Schlagworte: | |
| ISSN: | 1812-125X, 2664-2530 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This comparative study evaluates machine learning models for predicting arrest release outcomes using 5,226 marijuana possession cases from the Toronto Police Service (1997-2002). The dataset exhibited significant class imbalance, with only 17.1% detention outcomes versus 82.9% releases. After preprocessing to handle missing values and convert categorical variables, we implemented two modeling approaches: a 500-tree Random Forest classifier with feature importance measurement and a binomial Logistic Regression model. Both algorithms demonstrated strong predictive capability for release cases, achieving comparable overall accuracy (83.2-83.4%) and excellent sensitivity (>98%), though they struggled with the critical minority class as evidenced by poor specificity (<7%). The models showed similar discriminative power, with Logistic Regression achieving a marginally higher AUC-ROC (0.733 vs 0.726). Feature importance analysis identified employment status and prior police background checks as the strongest predictors, while demographic factors, including race, also contributed significantly to predictions. These results highlight both the technical challenges of imbalanced classification in justice system data and the ethical considerations surrounding potential algorithmic bias, particularly given the high false positive rate for detention predictions that could exacerbate existing disparities. The study underscores the need for careful model evaluation and responsible implementation when applying predictive analytics to sensitive criminal justice decisions, balancing statistical performance with considerations of fairness and social impact. |
|---|---|
| AbstractList | This comparative study evaluates machine learning models for predicting arrest release outcomes using 5,226 marijuana possession cases from the Toronto Police Service (1997-2002). The dataset exhibited significant class imbalance, with only 17.1% detention outcomes versus 82.9% releases. After preprocessing to handle missing values and convert categorical variables, we implemented two modeling approaches: a 500-tree Random Forest classifier with feature importance measurement and a binomial Logistic Regression model. Both algorithms demonstrated strong predictive capability for release cases, achieving comparable overall accuracy (83.2-83.4%) and excellent sensitivity (>98%), though they struggled with the critical minority class as evidenced by poor specificity (<7%). The models showed similar discriminative power, with Logistic Regression achieving a marginally higher AUC-ROC (0.733 vs 0.726). Feature importance analysis identified employment status and prior police background checks as the strongest predictors, while demographic factors, including race, also contributed significantly to predictions. These results highlight both the technical challenges of imbalanced classification in justice system data and the ethical considerations surrounding potential algorithmic bias, particularly given the high false positive rate for detention predictions that could exacerbate existing disparities. The study underscores the need for careful model evaluation and responsible implementation when applying predictive analytics to sensitive criminal justice decisions, balancing statistical performance with considerations of fairness and social impact. |
| Author | Adebayo, O. P. Oyeleke, K.T. Ibrahim, Ahmed |
| Author_xml | – sequence: 1 givenname: O. P. surname: Adebayo fullname: Adebayo, O. P. – sequence: 2 givenname: Ahmed surname: Ibrahim fullname: Ibrahim, Ahmed – sequence: 3 givenname: K.T. surname: Oyeleke fullname: Oyeleke, K.T. |
| BookMark | eNo90E1LAzEUheEgClbt3mX-wNSbycck7krxo1BRxIK7cCe9oynTiSSj4L9Xq7g6cBbP4j1hh0MaiLFzATMprXMXWyqzD6mimilnGjhgk9oYVdVawiGbCCvqStT6-ZhNS9kCQG0bqRozYeuHTJsYxji88HnOVEb-SD1hIX7_Poa0o3LJ53yRdm-YcYwfxOcD9p8lFp46fofhNQ7EV4R5-DHu0ob6csaOOuwLTf_2lK2vr54Wt9Xq_ma5mK-qIJSDilrYiNaYYIKuLWgDBlpllQThsDVonFbYCS3QKEnYtU4LQKWss7JGi_KULX_dTcKtf8txh_nTJ4x-f6T84jGPMfTkja2FaBog0ZKSnWllB62DRmFAoaX-tuDXCjmVkqn79wT4fWX_XdnvK_t9ZfkFnARxRw |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.33899/jes.v34i4.49670 |
| DatabaseName | CrossRef Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2664-2530 |
| EndPage | 73 |
| ExternalDocumentID | oai_doaj_org_article_68211770e1be43f6b3f0b9074aca1535 10_33899_jes_v34i4_49670 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c1490-eb0d1b66c6c528056060b4843019ab6a6954af151a643eafb9510a4489832a8a3 |
| IEDL.DBID | DOA |
| ISSN | 1812-125X |
| IngestDate | Tue Oct 07 09:25:13 EDT 2025 Thu Oct 09 00:12:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | Arabic English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1490-eb0d1b66c6c528056060b4843019ab6a6954af151a643eafb9510a4489832a8a3 |
| OpenAccessLink | https://doaj.org/article/68211770e1be43f6b3f0b9074aca1535 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_68211770e1be43f6b3f0b9074aca1535 crossref_primary_10_33899_jes_v34i4_49670 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | al-Tarbiyah wa-al-ʻilm lil-ʻulūm al-insānīyah : majallah ʻilmīyah muḥakkamah taṣduru ʻan Kullīyat al-Tarbiyah lil-ʻUlūm al-Insānīyah fī Jāmiʻat al-Mawṣil |
| PublicationYear | 2025 |
| Publisher | College of Education for Pure Sciences |
| Publisher_xml | – name: College of Education for Pure Sciences |
| SSID | ssj0002873476 |
| Score | 2.3047166 |
| Snippet | This comparative study evaluates machine learning models for predicting arrest release outcomes using 5,226 marijuana possession cases from the Toronto Police... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 62 |
| SubjectTerms | bail decision prediction bias and fairness in ml classification algorithms comparative analysis predicting |
| Title | Predicting Arrest Release Outcomes: A Comparative Analysis of Machine Learning Models |
| URI | https://doaj.org/article/68211770e1be43f6b3f0b9074aca1535 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2664-2530 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002873476 issn: 1812-125X databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwFLRQxcCCQIAoX_LAwmDqxI5rs5WKigFKhajULbIdG7VCbZV-_H6enRSysbAmURTds3Xv4qc7hG699txIqghIBU14IhWRBS-IMjbTjKVeVSauL93hUE4matSI-gozYZU9cAVcR8g0nCtSlxjHmReGeWqCotNWw26N7qXQ9TTE1Cz-MuoyHpPlAoMRYPFJdUbJgp9cZwYidMv4lN9zJUJOcYOTGtb9kWMGR-iwbg5xr_qoY7SnyxM0HpXhMCWMJ8OdEKWB34ErgH3w22YNC8atHnAP939tvPHOaQQvPH6N05IO10aqnzikn32tTtF48PTRfyZ1GAKxIGIocYYWiRHCCpulEtoWKqjhksMGVdoILVTGtQf-1tBjOO1NaJ00iC8Fe1ZLzc5Qa76Yu3OEnWWJTXyqvSo4tYVJXeayzHsroZ6SttHdDo58WXle5KAVInQ5QJdH6PIIXRs9Brx-ngtu1fEC1DCva5j_VcOL_3jJJTpIQzZvHLS7Qq11uXHXaN9u19NVeROXxzcVzryg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Arrest+Release+Outcomes%3A+A+Comparative+Analysis+of+Machine+Learning+Models&rft.jtitle=al-Tarbiyah+wa-al-%CA%BBilm+lil-%CA%BBul%C5%ABm+al-ins%C4%81n%C4%AByah+%3A+majallah+%CA%BBilm%C4%AByah+mu%E1%B8%A5akkamah+ta%E1%B9%A3duru+%CA%BBan+Kull%C4%AByat+al-Tarbiyah+lil-%CA%BBUl%C5%ABm+al-Ins%C4%81n%C4%AByah+f%C4%AB+J%C4%81mi%CA%BBat+al-Maw%E1%B9%A3il&rft.au=O.+P.+Adebayo&rft.au=Ahmed+Ibrahim&rft.au=K.T.+Oyeleke&rft.date=2025-10-01&rft.pub=College+of+Education+for+Pure+Sciences&rft.issn=1812-125X&rft.eissn=2664-2530&rft.volume=34&rft.issue=4&rft.spage=62&rft.epage=73&rft_id=info:doi/10.33899%2Fjes.v34i4.49670&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_68211770e1be43f6b3f0b9074aca1535 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1812-125X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1812-125X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1812-125X&client=summon |