Herd Accountability of Privacy-Preserving Algorithms: A Stackelberg Game Approach
AI-driven algorithmic systems are increasingly adopted across various sectors, yet the lack of transparency can raise accountability concerns about claimed privacy protection measures. While machine-based audits offer one avenue for addressing these issues, they are often costly and time-consuming....
Saved in:
| Published in: | IEEE transactions on information forensics and security Vol. 20; pp. 2237 - 2251 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
2025
|
| Subjects: | |
| ISSN: | 1556-6013, 1556-6021 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | AI-driven algorithmic systems are increasingly adopted across various sectors, yet the lack of transparency can raise accountability concerns about claimed privacy protection measures. While machine-based audits offer one avenue for addressing these issues, they are often costly and time-consuming. Herd audit, on the other hand, offers a promising alternative by leveraging collective intelligence from end-users. However, the presence of epistemic disparity among auditors, resulting in varying levels of domain expertise and access to relevant knowledge, captured by the rational inattention model, may impact audit assurance. An effective herd audit must establish a credible accountability threat for algorithm developers, incentivizing them not to breach user trust. In this work, our objective is to develop a systematic framework that explores the impact of herd audits on algorithm developers through the lens of the Stackelberg game. Our analysis reveals the importance of easy access to information and the appropriate design of rewards, as they increase the auditors' assurance in the audit process. In this context, herd audit serves as a deterrent to negligent behavior. Therefore, by enhancing herd accountability, herd audit contributes to responsible algorithm development, fostering trust between users and algorithms. |
|---|---|
| AbstractList | AI-driven algorithmic systems are increasingly adopted across various sectors, yet the lack of transparency can raise accountability concerns about claimed privacy protection measures. While machine-based audits offer one avenue for addressing these issues, they are often costly and time-consuming. Herd audit, on the other hand, offers a promising alternative by leveraging collective intelligence from end-users. However, the presence of epistemic disparity among auditors, resulting in varying levels of domain expertise and access to relevant knowledge, captured by the rational inattention model, may impact audit assurance. An effective herd audit must establish a credible accountability threat for algorithm developers, incentivizing them not to breach user trust. In this work, our objective is to develop a systematic framework that explores the impact of herd audits on algorithm developers through the lens of the Stackelberg game. Our analysis reveals the importance of easy access to information and the appropriate design of rewards, as they increase the auditors' assurance in the audit process. In this context, herd audit serves as a deterrent to negligent behavior. Therefore, by enhancing herd accountability, herd audit contributes to responsible algorithm development, fostering trust between users and algorithms. |
| Author | Zhu, Quanyan Yang, Ya-Ting Zhang, Tao |
| Author_xml | – sequence: 1 givenname: Ya-Ting orcidid: 0000-0002-9158-1722 surname: Yang fullname: Yang, Ya-Ting email: yy4348@nyu.edu organization: Department of Electrical and Computer Engineering, New York University, Brooklyn, NY, USA – sequence: 2 givenname: Tao orcidid: 0000-0002-1454-4645 surname: Zhang fullname: Zhang, Tao email: tz636@nyu.edu organization: Department of Electrical and Computer Engineering, New York University, Brooklyn, NY, USA – sequence: 3 givenname: Quanyan orcidid: 0000-0002-0008-2953 surname: Zhu fullname: Zhu, Quanyan email: qz494@nyu.edu organization: Department of Electrical and Computer Engineering, New York University, Brooklyn, NY, USA |
| BookMark | eNpNkNtqwkAYhJdioWr7AIVe7AvE7jHZ9C5IPYBQi_Y6_Nn80W1jIrup4NurKKVXMxczw_ANSK9pGyTkmbMR5yx9Xc8nq5FgQo-kVkzq5I70udZxFDPBe3-eywcyCOGbMaV4bPrkc4a-pJm17W_TQeFq1x1pW9Gldwewx2jpMaA_uGZDs3rTetdtd-GNZnTVgf3BukC_oVPYIc32e9-C3T6S-wrqgE83HZKvyft6PIsWH9P5OFtElivTRSiQQVyyUkiRmvMdK-JCohYAIIoqASMVmjhVlU1QKW0Eh9JaEGeF1Fo5JPy6a30bgscq33u3A3_MOcsvTPILk_zCJL8xOXderh2HiP_yJklZYuQJIWBgMg |
| CODEN | ITIFA6 |
| Cites_doi | 10.1007/s12599-010-0114-8 10.1016/S0304-3932(03)00029-1 10.1145/3449148 10.1016/j.ejor.2019.05.012 10.1145/3139256 10.1037/0033-295X.111.4.1036 10.1007/s10796-012-9350-4 10.1109/MWC.2016.7721739 10.1145/3243734.3243863 10.4324/9781315212043-31 10.1109/CIC.2018.00054 10.1109/JIOT.2020.2996229 10.1109/TIFS.2021.3118886 10.1145/2480741.2480742 10.1017/S0265052522000085 10.1002/9781119723950.ch2 10.1109/MIC.2012.68 10.1007/978-3-031-30709-6 10.1109/LCSYS.2021.3132801 10.1016/j.procs.2019.08.098 10.1002/0471200611 10.1016/j.cogsys.2007.07.001 10.1287/opre.2013.1235 10.4135/9781452230597.n2 10.1109/JSAC.2012.121214 10.1109/CDC51059.2022.9993423 10.1145/3243734.3243818 10.1145/3057268 10.3390/s22031032 10.1111/j.1099-1123.2009.00413.x 10.1093/cybsec/tyae009 10.1007/978-3-319-47413-7_19 10.1257/aer.20140117 10.1016/j.cose.2018.01.005 10.1109/TIFS.2019.2955891 10.1007/978-3-540-79228-4_1 10.1007/978-3-319-68711-7_7 10.3390/g15040028 10.1038/s41598-016-0011-6 10.1016/j.red.2012.03.003 10.1257/aer.20130047 10.1007/978-3-030-66065-9_9 10.3390/su12239827 10.4108/icst.collaboratecom.2012.250499 10.1007/978-3-031-50670-3_18 10.1016/j.jcorpfin.2020.101588 10.1111/j.1540-6261.2007.01263.x 10.1093/acprof:oso/9780198237907.001.0001 10.1257/jel.20211524 10.1007/s11831-024-10095-6 10.1145/3159652.3159654 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TIFS.2025.3540357 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Government Computer Science |
| EISSN | 1556-6021 |
| EndPage | 2251 |
| ExternalDocumentID | 10_1109_TIFS_2025_3540357 10879078 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c148t-e2e0a6d0d23298044c26b3e52aaa2bf7a834e8694fc7e445821adcca221aa9cc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001435443500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1556-6013 |
| IngestDate | Sat Nov 29 08:14:10 EST 2025 Wed Aug 27 01:49:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c148t-e2e0a6d0d23298044c26b3e52aaa2bf7a834e8694fc7e445821adcca221aa9cc3 |
| ORCID | 0000-0002-9158-1722 0000-0002-1454-4645 0000-0002-0008-2953 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_10879078 crossref_primary_10_1109_TIFS_2025_3540357 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on information forensics and security |
| PublicationTitleAbbrev | TIFS |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 Guszcza (ref1) 2018 ref10 ref54 ref16 ref51 ref50 Tramer (ref20) 2022 ref46 ref45 ref48 ref47 ref42 ref41 ref44 Nasr (ref23) ref49 ref8 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 Steinke (ref22); 36 ref2 ref39 ref38 Dynan (ref43) Jagielski (ref18); 33 ref24 ref26 (ref62) 2001 Mittelstadt (ref7) 2016; 10 ref25 ref28 ref27 Lu (ref19); 35 ref29 Stevens (ref21) 2022 ref60 ref61 Ge (ref17) 2022 |
| References_xml | – ident: ref9 doi: 10.1007/s12599-010-0114-8 – ident: ref41 doi: 10.1016/S0304-3932(03)00029-1 – ident: ref6 doi: 10.1145/3449148 – ident: ref52 doi: 10.1016/j.ejor.2019.05.012 – ident: ref24 doi: 10.1145/3139256 – ident: ref40 doi: 10.1037/0033-295X.111.4.1036 – ident: ref25 doi: 10.1007/s10796-012-9350-4 – ident: ref34 doi: 10.1109/MWC.2016.7721739 – start-page: 16 volume-title: Proc. Financial Innov. Real Economy’ Conf. Sponsored Center Study Innov. Productiv. ident: ref43 article-title: Financial innovation and the great moderation: What do household data say? – start-page: 1631 volume-title: Proc. 32nd USENIX Secur. Symp. ident: ref23 article-title: Tight auditing of differentially private machine learning – ident: ref4 doi: 10.1145/3243734.3243863 – start-page: 19 volume-title: Classical Detection and Estimation Theory year: 2001 ident: ref62 – ident: ref11 doi: 10.4324/9781315212043-31 – ident: ref60 doi: 10.1109/CIC.2018.00054 – ident: ref36 doi: 10.1109/JIOT.2020.2996229 – ident: ref58 doi: 10.1109/TIFS.2021.3118886 – ident: ref12 doi: 10.1145/2480741.2480742 – volume: 33 start-page: 22205 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref18 article-title: Auditing differentially private machine learning: How private is private SGD? – ident: ref27 doi: 10.1017/S0265052522000085 – ident: ref13 doi: 10.1002/9781119723950.ch2 – ident: ref32 doi: 10.1109/MIC.2012.68 – year: 2022 ident: ref17 article-title: Accountability and insurance in IoT supply chain publication-title: arXiv:2201.11855 – ident: ref39 doi: 10.1007/978-3-031-30709-6 – year: 2022 ident: ref21 article-title: Backpropagation clipping for deep learning with differential privacy publication-title: arXiv:2202.05089 – ident: ref5 doi: 10.1109/LCSYS.2021.3132801 – ident: ref47 doi: 10.1016/j.procs.2019.08.098 – ident: ref61 doi: 10.1002/0471200611 – volume: 35 start-page: 4165 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref19 article-title: A general framework for auditing differentially private machine learning – ident: ref38 doi: 10.1016/j.cogsys.2007.07.001 – volume: 10 start-page: 12 year: 2016 ident: ref7 article-title: Automation, algorithms, and politics-auditing for transparency in content personalization systems publication-title: Int. J. Commun. – ident: ref33 doi: 10.1287/opre.2013.1235 – ident: ref37 doi: 10.4135/9781452230597.n2 – ident: ref57 doi: 10.1109/JSAC.2012.121214 – ident: ref59 doi: 10.1109/CDC51059.2022.9993423 – ident: ref3 doi: 10.1145/3243734.3243818 – ident: ref46 doi: 10.1145/3057268 – ident: ref50 doi: 10.3390/s22031032 – ident: ref8 doi: 10.1111/j.1099-1123.2009.00413.x – ident: ref54 doi: 10.1093/cybsec/tyae009 – ident: ref55 doi: 10.1007/978-3-319-47413-7_19 – ident: ref16 doi: 10.1257/aer.20140117 – ident: ref53 doi: 10.1016/j.cose.2018.01.005 – ident: ref56 doi: 10.1109/TIFS.2019.2955891 – ident: ref2 doi: 10.1007/978-3-540-79228-4_1 – ident: ref51 doi: 10.1007/978-3-319-68711-7_7 – ident: ref49 doi: 10.3390/g15040028 – ident: ref29 doi: 10.1038/s41598-016-0011-6 – ident: ref42 doi: 10.1016/j.red.2012.03.003 – ident: ref15 doi: 10.1257/aer.20130047 – ident: ref26 doi: 10.1007/978-3-030-66065-9_9 – volume-title: Why We Need to Audit Algorithms year: 2018 ident: ref1 – ident: ref30 doi: 10.3390/su12239827 – ident: ref35 doi: 10.4108/icst.collaboratecom.2012.250499 – volume: 36 start-page: 49268 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref22 article-title: Privacy auditing with one (1) training run – ident: ref14 doi: 10.1007/978-3-031-50670-3_18 – ident: ref28 doi: 10.1016/j.jcorpfin.2020.101588 – ident: ref44 doi: 10.1111/j.1540-6261.2007.01263.x – ident: ref10 doi: 10.1093/acprof:oso/9780198237907.001.0001 – ident: ref45 doi: 10.1257/jel.20211524 – ident: ref48 doi: 10.1007/s11831-024-10095-6 – year: 2022 ident: ref20 article-title: Debugging differential privacy: A case study for privacy auditing publication-title: arXiv:2202.12219 – ident: ref31 doi: 10.1145/3159652.3159654 |
| SSID | ssj0044168 |
| Score | 2.4160025 |
| Snippet | AI-driven algorithmic systems are increasingly adopted across various sectors, yet the lack of transparency can raise accountability concerns about claimed... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 2237 |
| SubjectTerms | accountability Accuracy Algorithm audit Costs Differential privacy Games Government Machine learning algorithms Privacy Protection rational inattention Stackelberg game Training Uniform resource locators |
| Title | Herd Accountability of Privacy-Preserving Algorithms: A Stackelberg Game Approach |
| URI | https://ieeexplore.ieee.org/document/10879078 |
| Volume | 20 |
| WOSCitedRecordID | wos001435443500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1556-6021 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044168 issn: 1556-6013 databaseCode: RIE dateStart: 20060101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8R4gEPoogRv9KDJ5PiWLd19bYYES8EIybcltK-IYkwMwYJ_73tNiIXD562LFuyvNf31df3-wHcqWliooYKKNMOpx6XPhXSn1IftWeWjxRMqYJsgg-H4WQiRtWwejELg4jF4TPs2tuil69TtbZbZcbCQ26KubAGNc6Dclhr53ZNWC_n3nw_oKbKYFULs-eIh_Fr_92Ugq7ftbsczIaivSC0x6pSBJV-85-_cwLHVfZIolLdp3CAyxY0d8wMpDLUFhztwQy2oPFLqHsGbwPMNKlIIkqQ7i1JEzLK5hupttSeybD-Yzkj0dcszeb552L1SCJi0lJj8QUkFnmRCyRRBUfeho_-8_hpQCteBapM8ZNTdNGRgXa0yaZEaCSn3GDK0HellO404TJkHoaB8BLF0bONtZ7URtOuuUqhFDuH-jJd4gUQ1wmURuQidJmFWpMME6GM_9SBRM5lB-53go6_S_iMuCg7HBFbrcRWK3GllQ60rZD3Xizle_nH8yto2M_LDZFrqOfZGm_gUG3y-Sq7LVbHD8ssuFc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oFJwHp3Pi_MzBkxCtSds03oY4N5xDcYK3kiWvOnCbdB-w_96k7XAXD55aSinlvbyvvLzfD-BC9xMbNXRIufEE9YUKqFRBnwZofLt8lORaZ2QTotuN3t_lczGsns3CIGJ2-Ayv3G3WyzdjPXNbZdbCI2GLuWgdNgLfZ14-rrV0vDaw55NvQRBSW2fwool548nrXrv5aotBFly5fQ7ugtFKGFrhVcnCSrPyzx_ahZ0ifySNXOF7sIajKlSW3AykMNUqbK8ADVah_Eupuw8vLUwNKWgicpjuBRkn5DkdzJVeUHcqw3mQ0QdpfH2M08H0czi5JQ1iE1Nr8xkoFnlQQySNApC8Bm_N-95dixbMClTb8mdKkaGnQuMZm0_JyEpOs7DPMWBKKdZPhIq4j1Eo_UQL9F1r7UYZq2tmr0pqzQ-gNBqP8BAI80JtEIWMGHdga4pjIrX1oCZUKISqw-VS0PF3DqARZ4WHJ2OnldhpJS60UoeaE_LKi7l8j_54fg5brd5TJ-60u4_HUHafyrdHTqA0TWd4Cpt6Ph1M0rNspfwAj9a7ng |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Herd+Accountability+of+Privacy-Preserving+Algorithms%3A+A+Stackelberg+Game+Approach&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Yang%2C+Ya-Ting&rft.au=Zhang%2C+Tao&rft.au=Zhu%2C+Quanyan&rft.date=2025&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=20&rft.spage=2237&rft.epage=2251&rft_id=info:doi/10.1109%2FTIFS.2025.3540357&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2025_3540357 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon |