Optimal prediction intervals for macroeconomic time series using chaos and evolutionary multi-objective optimization algorithms

In a first-of-its-kind study, this paper formulates the problem of estimating the prediction intervals (PIs) in a macroeconomic time series as a bi-objective optimization problem and solves it with three evolutionary algorithms namely, Non-dominated Sorting Genetic Algorithm (NSGA-II), Non-dominated...

Full description

Saved in:
Bibliographic Details
Published in:Swarm and evolutionary computation Vol. 71; p. 101070
Main Authors: Sarveswararao, Vangala, Ravi, Vadlamani, Huq, Shaik Tanveer Ul
Format: Journal Article
Language:English
Published: Elsevier B.V 01.06.2022
Subjects:
ISSN:2210-6502
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In a first-of-its-kind study, this paper formulates the problem of estimating the prediction intervals (PIs) in a macroeconomic time series as a bi-objective optimization problem and solves it with three evolutionary algorithms namely, Non-dominated Sorting Genetic Algorithm (NSGA-II), Non-dominated Sorting Particle Swarm Optimization (NSPSO) and Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA-D). We also proposed modeling the chaos present in the time series as a preprocessor, which we called stage-1. Accordingly, we proposed 2-stage models, where stage-1 is followed by obtaining the optimal point prediction using NSGA-II/NSPSO/MOEA-D and using these point predictions to obtain PIs (stage-2). We then proposed a 3-stage hybrid, which is built on the 2-stage model, wherein the 3rd stage also invokes NSGA-II/NSPSO/MOEA-D in order to estimate the PIs from the point predictions obtained in 2nd stage by simultaneously and explicitly optimizing (i) prediction interval coverage probability (PICP) and (ii) prediction interval average width (PIAW). The proposed models yielded better results in terms of both PICP and PIAW compared to the state-of-the-art Lower Upper Bound Estimation Method (LUBE) with Gradient Descent (GD) and LUBE with long short-term memory (LSTM) network. The 3-stage models outperformed the 2-stage models with respect to PICP but showed similar performance in PIAW at the cost of running NSGA-II/NSPSO/MOEA-D second time. Overall, MOEA-D yielded best PIs in two datasets and NSGA-II outperformed the other two in the third dataset. But, in terms of hypervolume, in 2-stage MOEA-D produced most diverse solutions in two datasets, while NSGA-II was the winner in the third dataset.
AbstractList In a first-of-its-kind study, this paper formulates the problem of estimating the prediction intervals (PIs) in a macroeconomic time series as a bi-objective optimization problem and solves it with three evolutionary algorithms namely, Non-dominated Sorting Genetic Algorithm (NSGA-II), Non-dominated Sorting Particle Swarm Optimization (NSPSO) and Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA-D). We also proposed modeling the chaos present in the time series as a preprocessor, which we called stage-1. Accordingly, we proposed 2-stage models, where stage-1 is followed by obtaining the optimal point prediction using NSGA-II/NSPSO/MOEA-D and using these point predictions to obtain PIs (stage-2). We then proposed a 3-stage hybrid, which is built on the 2-stage model, wherein the 3rd stage also invokes NSGA-II/NSPSO/MOEA-D in order to estimate the PIs from the point predictions obtained in 2nd stage by simultaneously and explicitly optimizing (i) prediction interval coverage probability (PICP) and (ii) prediction interval average width (PIAW). The proposed models yielded better results in terms of both PICP and PIAW compared to the state-of-the-art Lower Upper Bound Estimation Method (LUBE) with Gradient Descent (GD) and LUBE with long short-term memory (LSTM) network. The 3-stage models outperformed the 2-stage models with respect to PICP but showed similar performance in PIAW at the cost of running NSGA-II/NSPSO/MOEA-D second time. Overall, MOEA-D yielded best PIs in two datasets and NSGA-II outperformed the other two in the third dataset. But, in terms of hypervolume, in 2-stage MOEA-D produced most diverse solutions in two datasets, while NSGA-II was the winner in the third dataset.
ArticleNumber 101070
Author Sarveswararao, Vangala
Ravi, Vadlamani
Huq, Shaik Tanveer Ul
Author_xml – sequence: 1
  givenname: Vangala
  surname: Sarveswararao
  fullname: Sarveswararao, Vangala
  organization: SCIS, University of Hyderabad, Hyderabad-500046, India
– sequence: 2
  givenname: Vadlamani
  orcidid: 0000-0003-0082-6227
  surname: Ravi
  fullname: Ravi, Vadlamani
  email: rav_padma@yahoo.com
  organization: Centre of Excellence in Analytics, Institute for Development and Research in Banking Technology, Castle Hills Road No. 1, Masab Tank, Hyderabad-500057, India
– sequence: 3
  givenname: Shaik Tanveer Ul
  surname: Huq
  fullname: Huq, Shaik Tanveer Ul
  organization: SCIS, University of Hyderabad, Hyderabad-500046, India
BookMark eNqFkL1uwyAYRRlSqWmaJ-jCCzgFYmNn6FBF_YkUKUs7IwIfCZYNETiu0qWvXpx06tCyICHuvTrnBo2cd4DQHSUzSii_r2fxA3o_Y4Sx4YWUZITGjFGS8YKwazSNsSbpcMKKYjFGX5tDZ1vZ4EMAbVVnvcPWdRB62URsfMCtVMGD8s63VuH0GXCEYCHiY7Ruh9Ve-oil0zgNN8ehQYYTbo9NZzO_rSGV9oD9sGM_5XlBNjsfbLdv4y26MmkJpj_3BL0_P70tX7P15mW1fFxniuYVyQplcl3yYrGVtOSyLHK91YSbSsuKcV4Sw43KS8YKSKyaEmCypBWYnHBZcTqfoPmlN8HEGMCIQ0jc4SQoEYM6UYuzOjGoExd1KbX4lVK2OyN0Qdrmn-zDJQsJq7cQRFQWnEqaQ3IitLd_5r8BeQCTUQ
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126734
crossref_primary_10_1016_j_swevo_2025_102099
crossref_primary_10_1016_j_swevo_2024_101779
crossref_primary_10_1016_j_renene_2024_120885
crossref_primary_10_1016_j_egyr_2022_09_077
crossref_primary_10_1007_s11269_024_03848_2
crossref_primary_10_1016_j_apm_2024_04_057
crossref_primary_10_1016_j_cie_2022_108732
crossref_primary_10_3233_JIFS_236000
crossref_primary_10_1016_j_compeleceng_2024_109717
crossref_primary_10_1016_j_procs_2025_04_177
crossref_primary_10_1016_j_swevo_2024_101587
Cites_doi 10.1109/TEVC.2007.892759
10.1109/TNNLS.2020.2967816
10.1103/PhysRevLett.45.712
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1162/neco.1992.4.3.448
10.1016/j.asoc.2019.105506
10.1016/j.asoc.2020.106343
10.1007/s42979-020-00382-x
10.5370/JEET.2017.12.3.989
10.1093/restud/rdw003
10.1109/TPWRS.2013.2288100
10.1109/TNN.2011.2162110
10.1109/4235.996017
10.1016/S0167-2789(97)00118-8
10.1016/0167-2789(93)90009-P
10.1007/978-3-540-31880-4_18
10.1109/TEVC.2013.2290082
10.1109/TEVC.2013.2290086
10.1007/s00181-019-01689-2
10.1016/j.energy.2014.06.104
10.1016/j.apm.2018.10.019
10.1016/j.advwatres.2010.01.001
10.1016/j.engappai.2016.08.012
10.1109/TCYB.2017.2771213
10.1109/72.963764
10.1109/TNNLS.2015.2512283
10.1016/j.ins.2017.08.039
10.1111/j.1538-4616.2007.00014.x
10.1007/978-3-642-19893-9_8
10.1016/j.swevo.2017.05.003
10.1038/nmeth.2659
10.1016/j.econlet.2004.09.003
10.3390/app8020185
10.1162/neco.1996.8.1.152
10.1109/TNN.2010.2096824
10.1016/j.comgeo.2010.03.004
10.2307/1403575
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2022.101070
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2022_101070
S2210650222000426
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c1480-5cf4d7659ba176a754dbd06f8da826670f6fc47225e210d10e2a718ef406a8613
ISSN 2210-6502
IngestDate Tue Nov 18 20:44:35 EST 2025
Wed Nov 05 20:55:37 EST 2025
Fri Feb 23 02:39:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chaos
Prediction intervals
Bi-objective optimization
Macroeconomic time series
Evolutionary multiobjective optimization algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1480-5cf4d7659ba176a754dbd06f8da826670f6fc47225e210d10e2a718ef406a8613
ORCID 0000-0003-0082-6227
ParticipantIDs crossref_primary_10_1016_j_swevo_2022_101070
crossref_citationtrail_10_1016_j_swevo_2022_101070
elsevier_sciencedirect_doi_10_1016_j_swevo_2022_101070
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mukhopadhyay, Maulik, Bandyopadhyay, Coello (bib0049) 2013; 18
MacKay (bib0003) 1992; 4
Wang, Tang, Wen, Ma (bib0037) 2019; 81
Pearce, Zaki, Brintrup, Neely (bib0006) 2018
Sun, Wang, Hu (bib0019) 2017
Dorfman (bib0012) 1938; 1
Coello, Lamont, Van Veldhuizen (bib0046) 2007
Fonseca, Guerreiro, López-Ibáñez, Paquete (bib0055) 2011
Medeiros, Vasconcelos, Veiga, Zilberman (bib0029) 2019; 0
Khosravi, Nahavandi, Creighton, Atiya (bib0005) 2011; 22
Wang, Fang, Pang, Sun (bib0018) 2017; 12
Mushtaq (bib0054) 2012
Gal, Ghahramani (bib0004) 2016
Tibshirani (bib0011) 1996; 8
Quan, Srinivasan, Khosravi (bib0022) 2014; 73
Pradeepkumar, Ravi (bib0032) 2016
Bringmann, Friedrich (bib0039) 2010; 43
Papadopoulos, Edwards, Murray (bib0008) 2001; 12
Zhang, Li (bib0059) 2007; 11
Kumar, Ravi, Ravi (bib0034) 2019; 6
Lyapunov (bib0044) 1907
Krzywinski, Altman (bib0001) 2013; 10
Lu, Ding, Dai, Chai (bib0038) 2020; 31
Deb (bib0047) 2001
Gal (bib0002) 2016; 1
.
Lian, Zeng, Yao, Tang, Chen (bib0017) 2016; 27
Heskes, Mozer, Jordan, Petsche (bib0014) 1997; 9
Rosenstein, Collins, De Luca (bib0043) 1993; 65
Han, Gong, Jin, Pan (bib0060) 2019; 49
Galván, Valls, Cervantes, Aler (bib0010) 2017; 418
Li (bib0050) 2003
Pradeepkumar, Ravi (bib0033) 2017
No Title, (n.d.).
Khosravi, Nahavandi, Creighton, Atiya (bib0009) 2011; 22
Wan, Xu, Pinson, Dong, Wong (bib0021) 2014; 29
Lawrance (bib0051) 1991; 59
Nix, Weigend (bib0013) 1994
Pradeepkumar, Ravi (bib0030) 2014
Pratap, Sengupta (bib0026) 2019
Ravi, Pradeepkumar, Deb (bib0031) 2017; 36
Lorenz (bib0040) 1963; 20
Jiang, Li, Li (bib0036) 2019; 67
Fonseca, Da Fonseca, Paquete (bib0056) 2005
Shaik, Ravi, Deb (bib0057) 2020; 2
ak, Li, Vitelli, Zio (bib0016) 2013
Shen, Wang, Chen (bib0020) 2018; 8
Deb, Pratap, Agarwal, Meyarivan (bib0007) 2002; 6
Chudý, Karmakar, Wu (bib0024) 2020; 58
Mukhopadhyay, Maulik, Bandyopadhyay, Coello (bib0048) 2013; 18
Müller (bib0023) 2016; 83
Han, Li, Sang, Liu, Gao, Pan (bib0061) 2020; 93
Dhanya, Kumar (bib0041) 2010; 33
Cao (bib0045) 1997; 110
Lakshminarayanan, Pritzel, Blundell, Guyon, Luxburg, Bengio, Wallach, Fergus, Vishwanathan, Garnett (bib0015) 2017; 30
Sarveswararao, Ravi (bib0025) 2021
Packard, Crutchfield, Farmer, Shaw (bib0042) 1980; 45
Ravi, Tejasviram, Sharma, Khansama (bib0058) 2017
STOCK, WATSON (bib0028) 2007; 39
Nakamura (bib0027) 2005
Krishna, Ravi (bib0035) 2016; 56
Khosravi (10.1016/j.swevo.2022.101070_bib0005) 2011; 22
Krishna (10.1016/j.swevo.2022.101070_bib0035) 2016; 56
Müller (10.1016/j.swevo.2022.101070_bib0023) 2016; 83
Mushtaq (10.1016/j.swevo.2022.101070_bib0054) 2012
Gal (10.1016/j.swevo.2022.101070_bib0002) 2016; 1
STOCK (10.1016/j.swevo.2022.101070_bib0028) 2007; 39
10.1016/j.swevo.2022.101070_bib0053
10.1016/j.swevo.2022.101070_bib0052
Deb (10.1016/j.swevo.2022.101070_bib0047) 2001
Deb (10.1016/j.swevo.2022.101070_bib0007) 2002; 6
Khosravi (10.1016/j.swevo.2022.101070_bib0009) 2011; 22
Wang (10.1016/j.swevo.2022.101070_bib0018) 2017; 12
Mukhopadhyay (10.1016/j.swevo.2022.101070_bib0048) 2013; 18
Wang (10.1016/j.swevo.2022.101070_bib0037) 2019; 81
Li (10.1016/j.swevo.2022.101070_bib0050) 2003
Shaik (10.1016/j.swevo.2022.101070_bib0057) 2020; 2
Coello (10.1016/j.swevo.2022.101070_bib0046) 2007
Pradeepkumar (10.1016/j.swevo.2022.101070_bib0030) 2014
Galván (10.1016/j.swevo.2022.101070_bib0010) 2017; 418
Pearce (10.1016/j.swevo.2022.101070_bib0006) 2018
Jiang (10.1016/j.swevo.2022.101070_bib0036) 2019; 67
Rosenstein (10.1016/j.swevo.2022.101070_bib0043) 1993; 65
Fonseca (10.1016/j.swevo.2022.101070_bib0055) 2011
Fonseca (10.1016/j.swevo.2022.101070_bib0056) 2005
Lakshminarayanan (10.1016/j.swevo.2022.101070_bib0015) 2017; 30
Pradeepkumar (10.1016/j.swevo.2022.101070_bib0033) 2017
Cao (10.1016/j.swevo.2022.101070_bib0045) 1997; 110
Ravi (10.1016/j.swevo.2022.101070_bib0058) 2017
ak (10.1016/j.swevo.2022.101070_bib0016) 2013
Lian (10.1016/j.swevo.2022.101070_bib0017) 2016; 27
Lawrance (10.1016/j.swevo.2022.101070_bib0051) 1991; 59
Gal (10.1016/j.swevo.2022.101070_bib0004) 2016
Nakamura (10.1016/j.swevo.2022.101070_bib0027) 2005
Ravi (10.1016/j.swevo.2022.101070_bib0031) 2017; 36
Kumar (10.1016/j.swevo.2022.101070_bib0034) 2019; 6
Tibshirani (10.1016/j.swevo.2022.101070_bib0011) 1996; 8
Shen (10.1016/j.swevo.2022.101070_bib0020) 2018; 8
Krzywinski (10.1016/j.swevo.2022.101070_bib0001) 2013; 10
Dhanya (10.1016/j.swevo.2022.101070_bib0041) 2010; 33
Sarveswararao (10.1016/j.swevo.2022.101070_bib0025) 2021
Heskes (10.1016/j.swevo.2022.101070_bib0014) 1997; 9
Bringmann (10.1016/j.swevo.2022.101070_bib0039) 2010; 43
Chudý (10.1016/j.swevo.2022.101070_bib0024) 2020; 58
Wan (10.1016/j.swevo.2022.101070_bib0021) 2014; 29
Pradeepkumar (10.1016/j.swevo.2022.101070_bib0032) 2016
Nix (10.1016/j.swevo.2022.101070_bib0013) 1994
Packard (10.1016/j.swevo.2022.101070_bib0042) 1980; 45
Papadopoulos (10.1016/j.swevo.2022.101070_bib0008) 2001; 12
Han (10.1016/j.swevo.2022.101070_bib0060) 2019; 49
Zhang (10.1016/j.swevo.2022.101070_bib0059) 2007; 11
MacKay (10.1016/j.swevo.2022.101070_bib0003) 1992; 4
Quan (10.1016/j.swevo.2022.101070_bib0022) 2014; 73
Sun (10.1016/j.swevo.2022.101070_bib0019) 2017
Pratap (10.1016/j.swevo.2022.101070_bib0026) 2019
Han (10.1016/j.swevo.2022.101070_bib0061) 2020; 93
Dorfman (10.1016/j.swevo.2022.101070_bib0012) 1938; 1
Lorenz (10.1016/j.swevo.2022.101070_bib0040) 1963; 20
Lu (10.1016/j.swevo.2022.101070_bib0038) 2020; 31
Medeiros (10.1016/j.swevo.2022.101070_bib0029) 2019; 0
Lyapunov (10.1016/j.swevo.2022.101070_bib0044) 1907
Mukhopadhyay (10.1016/j.swevo.2022.101070_bib0049) 2013; 18
References_xml – volume: 8
  start-page: 185
  year: 2018
  ident: bib0020
  article-title: Wind power forecasting using multi-objective evolutionary algorithms for wavelet neural network-optimized prediction intervals
  publication-title: Appl. Sci.
– volume: 12
  start-page: 1278
  year: 2001
  end-page: 1287
  ident: bib0008
  article-title: Confidence estimation methods for neural networks: A practical comparison
  publication-title: IEEE Trans. Neural Networks.
– year: 2007
  ident: bib0046
  article-title: Evolutionary Algorithms for Solving Multi-Objective Problems
– volume: 36
  start-page: 136
  year: 2017
  end-page: 149
  ident: bib0031
  article-title: Financial time series prediction using hybrids of chaos theory, multi-layer perceptron and multi-objective evolutionary algorithms
  publication-title: Swarm Evol. Comput.
– volume: 65
  start-page: 117
  year: 1993
  end-page: 134
  ident: bib0043
  article-title: A practical method for calculating largest Lyapunov exponents from small data sets
  publication-title: Phys. D Nonlin. Phenom.
– volume: 81
  year: 2019
  ident: bib0037
  article-title: A hybrid intelligent approach for constructing landslide displacement prediction intervals
  publication-title: Appl. Soft Comput.
– volume: 49
  start-page: 184
  year: 2019
  end-page: 197
  ident: bib0060
  article-title: Evolutionary multiobjective blocking lot-streaming flow shop scheduling with machine breakdowns
  publication-title: IEEE Transact. Cybernet.
– volume: 29
  start-page: 1166
  year: 2014
  end-page: 1174
  ident: bib0021
  article-title: Optimal prediction intervals of wind power generation
  publication-title: IEEE Trans. Power Syst.
– volume: 18
  start-page: 4
  year: 2013
  end-page: 19
  ident: bib0048
  article-title: A survey of multiobjective evolutionary algorithms for data mining: Part I
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 55
  year: 1994
  end-page: 60
  ident: bib0013
  article-title: Estimating the mean and variance of the target probability distribution
  publication-title: IEEE Int. Conf. Neural Networks - Conf. Proc
– start-page: 363
  year: 2014
  end-page: 375
  ident: bib0030
  article-title: Forex rate prediction using chaos, neural network and particle swarm optimization
  publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Springer Verlag
– volume: 8
  start-page: 152
  year: 1996
  end-page: 163
  ident: bib0011
  article-title: A comparison of some error estimates for neural network models
  publication-title: Neur. Comput.
– start-page: 1050
  year: 2016
  end-page: 1059
  ident: bib0004
  article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning
  publication-title: Int. Conf. Mach. Learn.
– volume: 83
  start-page: 1711
  year: 2016
  end-page: 1740
  ident: bib0023
  article-title: Measuring uncertainty about long-run predictions
  publication-title: Rev. Econ. Stud.
– year: 2018
  ident: bib0006
  article-title: High-quality prediction intervals for deep learning: a distribution-free, ensembled approach
  publication-title: Proc. 35th Int. Conf. Mach. Learn. ICML
– start-page: 517
  year: 2016
  end-page: 522
  ident: bib0032
  article-title: FOREX rate prediction using chaos and quantile regression random forest
  publication-title: 2016 3rd Int. Conf. Recent Adv. Inf. Technol. RAIT
– volume: 20
  start-page: 130
  year: 1963
  end-page: 141
  ident: bib0040
  article-title: Deterministic nonperiodic flow
  publication-title: J. Atmos. Sci.
– volume: 4
  start-page: 448
  year: 1992
  end-page: 472
  ident: bib0003
  article-title: A practical Bayesian framework for backpropagation networks
  publication-title: Neur. Comput.
– start-page: 106
  year: 2011
  end-page: 120
  ident: bib0055
  article-title: On the computation of the empirical attainment function
  publication-title: Int. Conf. Evol. Multi-Criterion Optim.
– volume: 1
  start-page: 129
  year: 1938
  end-page: 137
  ident: bib0012
  article-title: A note on the delta-method for finding variance formulae
  publication-title: Biometr. Bull.
– volume: 2
  year: 2020
  ident: bib0057
  article-title: Evolutionary multi-objective optimization algorithm for community detection in complex social networks
  publication-title: SN Comput. Sci.
– start-page: 37
  year: 2003
  end-page: 48
  ident: bib0050
  article-title: A non-dominated sorting particle swarm optimizer for multiobjective optimization
  publication-title: Genet. Evol. Comput. Conf.
– volume: 110
  start-page: 43
  year: 1997
  end-page: 50
  ident: bib0045
  article-title: Practical method for determining the minimum embedding dimension of a scalar time series
  publication-title: Phys. D Nonlin. Phenom.
– volume: 9
  start-page: 176
  year: 1997
  end-page: 182
  ident: bib0014
  article-title: Practical Confidence and Prediction Intervals
  publication-title: Adv. Neural Inf. Process. Syst
– volume: 10
  start-page: 921
  year: 2013
  end-page: 922
  ident: bib0001
  article-title: Points of Significance: Error bars
  publication-title: Nat. Methods.
– volume: 22
  start-page: 1341
  year: 2011
  end-page: 1356
  ident: bib0009
  article-title: Comprehensive review of neural network-based prediction intervals and new advances
  publication-title: IEEE Trans. Neur. Netw.
– volume: 56
  start-page: 30
  year: 2016
  end-page: 59
  ident: bib0035
  article-title: Evolutionary computing applied to customer relationship management: a survey
  publication-title: Eng. Appl. Artif. Intell.
– year: 2012
  ident: bib0054
  article-title: Augmented dickey fuller test
  publication-title: SSRN Electron. J.
– volume: 6
  start-page: 234
  year: 2019
  end-page: 247
  ident: bib0034
  article-title: MapReduce-based fuzzy very fast decision tree for constructing prediction intervals
  publication-title: Int. J. Big Data Intell.
– volume: 67
  start-page: 101
  year: 2019
  end-page: 122
  ident: bib0036
  article-title: Multi-objective algorithm for the design of prediction intervals for wind power forecasting model
  publication-title: Appl. Math. Model.
– volume: 33
  start-page: 327
  year: 2010
  end-page: 347
  ident: bib0041
  article-title: Nonlinear ensemble prediction of chaotic daily rainfall
  publication-title: Adv. Water Resour.
– volume: 73
  start-page: 916
  year: 2014
  end-page: 925
  ident: bib0022
  article-title: Uncertainty handling using neural network-based prediction intervals for electrical load forecasting
  publication-title: Energy
– volume: 22
  start-page: 337
  year: 2011
  end-page: 346
  ident: bib0005
  article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals
  publication-title: IEEE Trans. Neur. Netw.
– volume: 31
  start-page: 5426
  year: 2020
  end-page: 5440
  ident: bib0038
  article-title: Ensemble stochastic configuration networks for estimating prediction intervals: a simultaneous robust training algorithm and its application
  publication-title: IEEE Trans. Neur. Netw. Learn. Syst.
– start-page: 203
  year: 1907
  end-page: 474
  ident: bib0044
  article-title: Problème général de la stabilité du mouvement
  publication-title: Ann. La Fac. Des Sci. Toulouse Mathématiques
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib0059
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transact. Evolut. Comput.
– volume: 39
  start-page: 3
  year: 2007
  end-page: 33
  ident: bib0028
  article-title: Why has U.S. inflation become harder to forecast?
  publication-title: J. Money, Credit Bank
– volume: 30
  start-page: 6402
  year: 2017
  end-page: 6413
  ident: bib0015
  article-title: Simple and scalable predictive uncertainty estimation using deep ensembles
  publication-title: Adv. Neural Inf. Process. Syst
– volume: 58
  start-page: 191
  year: 2020
  end-page: 222
  ident: bib0024
  article-title: Long-term prediction intervals of economic time series
  publication-title: Empir. Econ.
– volume: 27
  start-page: 2683
  year: 2016
  end-page: 2695
  ident: bib0017
  article-title: Landslide displacement prediction with uncertainty based on neural networks with random hidden weights
  publication-title: IEEE Trans. Neur. Netw. Learn. Syst.
– volume: 43
  start-page: 601
  year: 2010
  end-page: 610
  ident: bib0039
  article-title: Approximating the volume of unions and intersections of high-dimensional geometric objects
  publication-title: Comput. Geom.
– year: 2001
  ident: bib0047
  article-title: Multi-Objective Optimization using Evolutionary Algorithms
– volume: 59
  start-page: 67
  year: 1991
  ident: bib0051
  article-title: Directionality and reversibility in time series
  publication-title: Int. Stat. Rev. /Rev. Int. Stat.
– year: 2021
  ident: bib0025
  article-title: Generating Prediction Intervals for Macroe- conomic variables using LSTM based LUBE Method
  publication-title: 2nd Int. Conf. Cybern. Cogn. Mach. Learn. Appl. (ICCCMLA)
– volume: 18
  start-page: 20
  year: 2013
  end-page: 35
  ident: bib0049
  article-title: Survey of multiobjective evolutionary algorithms for data mining: Part II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 1
  start-page: 3
  year: 2016
  ident: bib0002
  article-title: Uncertainty in deep learning
  publication-title: Univ. Cambridge.
– year: 2013
  ident: bib0016
  article-title: Multi-objective Genetic Algorithm Optimization of a Neural Network for Estimating Wind Speed Prediction Intervals
– year: 2019
  ident: bib0026
  article-title: Macroeconomic forecasting in india: does machine learning hold the key to better forecasts?
  publication-title: RBI Working Paper Series
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0007
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 373
  year: 2005
  end-page: 378
  ident: bib0027
  article-title: Inflation forecasting using a neural network
  publication-title: Econ. Lett. 86
– start-page: 2017
  year: 2017
  ident: bib0019
  article-title: Prediction interval construction for byproduct gas flow forecasting using optimized twin extreme learning machine
  publication-title: Math. Probl. Eng.
– volume: 45
  start-page: 712
  year: 1980
  end-page: 716
  ident: bib0042
  article-title: Geometry from a time series
  publication-title: Phys. Rev. Lett.
– reference: .
– year: 2017
  ident: bib0058
  article-title: Prediction intervals via support vector-quantile regression random forest hybrid
  publication-title: Proceedings of the 10th Annual ACM COMPUTE Conference, India (ACM COMPUTE. 2017)
– start-page: 250
  year: 2005
  end-page: 264
  ident: bib0056
  article-title: Exploring the performance of stochastic multiobjective optimisers with the second-order attainment function
  publication-title: Int. Conf. Evol. Multi-Criterion Optim.
– volume: 0
  start-page: 1
  year: 2019
  end-page: 22
  ident: bib0029
  article-title: Forecasting inflation in a data-rich environment: the benefits of machine learning methods
  publication-title: J. Bus. Econ. Stat.
– volume: 418
  start-page: 363
  year: 2017
  end-page: 382
  ident: bib0010
  article-title: Multi-objective evolutionary optimization of prediction intervals for solar energy forecasting with neural networks
  publication-title: Inf. Sci. (Ny).
– start-page: 219
  year: 2017
  end-page: 227
  ident: bib0033
  article-title: FOREX rate prediction: A hybrid approach using chaos theory and multivariate adaptive regression splines
  publication-title: Adv. Intell. Syst. Comput.
– volume: 93
  year: 2020
  ident: bib0061
  article-title: Discrete evolutionary multi-objective optimization for energy-efficient blocking flow shop scheduling with setup time
  publication-title: Appl. Soft Comput.
– volume: 12
  start-page: 989
  year: 2017
  end-page: 995
  ident: bib0018
  article-title: Wind power interval prediction based on improved PSO and BP neural network
  publication-title: J. Electr. Eng. Technol.
– reference: No Title, (n.d.).
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.swevo.2022.101070_bib0059
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transact. Evolut. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 31
  start-page: 5426
  year: 2020
  ident: 10.1016/j.swevo.2022.101070_bib0038
  article-title: Ensemble stochastic configuration networks for estimating prediction intervals: a simultaneous robust training algorithm and its application
  publication-title: IEEE Trans. Neur. Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2967816
– volume: 45
  start-page: 712
  year: 1980
  ident: 10.1016/j.swevo.2022.101070_bib0042
  article-title: Geometry from a time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.712
– volume: 20
  start-page: 130
  year: 1963
  ident: 10.1016/j.swevo.2022.101070_bib0040
  article-title: Deterministic nonperiodic flow
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– volume: 4
  start-page: 448
  year: 1992
  ident: 10.1016/j.swevo.2022.101070_bib0003
  article-title: A practical Bayesian framework for backpropagation networks
  publication-title: Neur. Comput.
  doi: 10.1162/neco.1992.4.3.448
– start-page: 1050
  year: 2016
  ident: 10.1016/j.swevo.2022.101070_bib0004
  article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning
  publication-title: Int. Conf. Mach. Learn.
– start-page: 203
  year: 1907
  ident: 10.1016/j.swevo.2022.101070_bib0044
  article-title: Problème général de la stabilité du mouvement
  publication-title: Ann. La Fac. Des Sci. Toulouse Mathématiques
– year: 2012
  ident: 10.1016/j.swevo.2022.101070_bib0054
  article-title: Augmented dickey fuller test
  publication-title: SSRN Electron. J.
– start-page: 55
  year: 1994
  ident: 10.1016/j.swevo.2022.101070_bib0013
  article-title: Estimating the mean and variance of the target probability distribution
– volume: 81
  year: 2019
  ident: 10.1016/j.swevo.2022.101070_bib0037
  article-title: A hybrid intelligent approach for constructing landslide displacement prediction intervals
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105506
– year: 2001
  ident: 10.1016/j.swevo.2022.101070_bib0047
– volume: 93
  year: 2020
  ident: 10.1016/j.swevo.2022.101070_bib0061
  article-title: Discrete evolutionary multi-objective optimization for energy-efficient blocking flow shop scheduling with setup time
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106343
– volume: 6
  start-page: 234
  year: 2019
  ident: 10.1016/j.swevo.2022.101070_bib0034
  article-title: MapReduce-based fuzzy very fast decision tree for constructing prediction intervals
  publication-title: Int. J. Big Data Intell.
– volume: 2
  issue: 1
  year: 2020
  ident: 10.1016/j.swevo.2022.101070_bib0057
  article-title: Evolutionary multi-objective optimization algorithm for community detection in complex social networks
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-020-00382-x
– ident: 10.1016/j.swevo.2022.101070_bib0053
– year: 2017
  ident: 10.1016/j.swevo.2022.101070_bib0058
  article-title: Prediction intervals via support vector-quantile regression random forest hybrid
– start-page: 2017
  year: 2017
  ident: 10.1016/j.swevo.2022.101070_bib0019
  article-title: Prediction interval construction for byproduct gas flow forecasting using optimized twin extreme learning machine
  publication-title: Math. Probl. Eng.
– volume: 9
  start-page: 176
  year: 1997
  ident: 10.1016/j.swevo.2022.101070_bib0014
  article-title: Practical Confidence and Prediction Intervals
– volume: 12
  start-page: 989
  year: 2017
  ident: 10.1016/j.swevo.2022.101070_bib0018
  article-title: Wind power interval prediction based on improved PSO and BP neural network
  publication-title: J. Electr. Eng. Technol.
  doi: 10.5370/JEET.2017.12.3.989
– volume: 83
  start-page: 1711
  year: 2016
  ident: 10.1016/j.swevo.2022.101070_bib0023
  article-title: Measuring uncertainty about long-run predictions
  publication-title: Rev. Econ. Stud.
  doi: 10.1093/restud/rdw003
– volume: 29
  start-page: 1166
  year: 2014
  ident: 10.1016/j.swevo.2022.101070_bib0021
  article-title: Optimal prediction intervals of wind power generation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2288100
– volume: 22
  start-page: 1341
  year: 2011
  ident: 10.1016/j.swevo.2022.101070_bib0009
  article-title: Comprehensive review of neural network-based prediction intervals and new advances
  publication-title: IEEE Trans. Neur. Netw.
  doi: 10.1109/TNN.2011.2162110
– start-page: 219
  year: 2017
  ident: 10.1016/j.swevo.2022.101070_bib0033
  article-title: FOREX rate prediction: A hybrid approach using chaos theory and multivariate adaptive regression splines
  publication-title: Adv. Intell. Syst. Comput.
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.swevo.2022.101070_bib0007
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 110
  start-page: 43
  year: 1997
  ident: 10.1016/j.swevo.2022.101070_bib0045
  article-title: Practical method for determining the minimum embedding dimension of a scalar time series
  publication-title: Phys. D Nonlin. Phenom.
  doi: 10.1016/S0167-2789(97)00118-8
– volume: 65
  start-page: 117
  year: 1993
  ident: 10.1016/j.swevo.2022.101070_bib0043
  article-title: A practical method for calculating largest Lyapunov exponents from small data sets
  publication-title: Phys. D Nonlin. Phenom.
  doi: 10.1016/0167-2789(93)90009-P
– ident: 10.1016/j.swevo.2022.101070_bib0052
– start-page: 250
  year: 2005
  ident: 10.1016/j.swevo.2022.101070_bib0056
  article-title: Exploring the performance of stochastic multiobjective optimisers with the second-order attainment function
  publication-title: Int. Conf. Evol. Multi-Criterion Optim.
  doi: 10.1007/978-3-540-31880-4_18
– volume: 18
  start-page: 20
  year: 2013
  ident: 10.1016/j.swevo.2022.101070_bib0049
  article-title: Survey of multiobjective evolutionary algorithms for data mining: Part II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2290082
– volume: 30
  start-page: 6402
  year: 2017
  ident: 10.1016/j.swevo.2022.101070_bib0015
  article-title: Simple and scalable predictive uncertainty estimation using deep ensembles
– volume: 18
  start-page: 4
  year: 2013
  ident: 10.1016/j.swevo.2022.101070_bib0048
  article-title: A survey of multiobjective evolutionary algorithms for data mining: Part I
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2290086
– volume: 58
  start-page: 191
  year: 2020
  ident: 10.1016/j.swevo.2022.101070_bib0024
  article-title: Long-term prediction intervals of economic time series
  publication-title: Empir. Econ.
  doi: 10.1007/s00181-019-01689-2
– volume: 73
  start-page: 916
  year: 2014
  ident: 10.1016/j.swevo.2022.101070_bib0022
  article-title: Uncertainty handling using neural network-based prediction intervals for electrical load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2014.06.104
– volume: 67
  start-page: 101
  year: 2019
  ident: 10.1016/j.swevo.2022.101070_bib0036
  article-title: Multi-objective algorithm for the design of prediction intervals for wind power forecasting model
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.10.019
– volume: 33
  start-page: 327
  year: 2010
  ident: 10.1016/j.swevo.2022.101070_bib0041
  article-title: Nonlinear ensemble prediction of chaotic daily rainfall
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2010.01.001
– year: 2021
  ident: 10.1016/j.swevo.2022.101070_bib0025
  article-title: Generating Prediction Intervals for Macroe- conomic variables using LSTM based LUBE Method
– volume: 56
  start-page: 30
  year: 2016
  ident: 10.1016/j.swevo.2022.101070_bib0035
  article-title: Evolutionary computing applied to customer relationship management: a survey
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.08.012
– volume: 49
  start-page: 184
  issue: 1
  year: 2019
  ident: 10.1016/j.swevo.2022.101070_bib0060
  article-title: Evolutionary multiobjective blocking lot-streaming flow shop scheduling with machine breakdowns
  publication-title: IEEE Transact. Cybernet.
  doi: 10.1109/TCYB.2017.2771213
– start-page: 517
  year: 2016
  ident: 10.1016/j.swevo.2022.101070_bib0032
  article-title: FOREX rate prediction using chaos and quantile regression random forest
– start-page: 363
  year: 2014
  ident: 10.1016/j.swevo.2022.101070_bib0030
  article-title: Forex rate prediction using chaos, neural network and particle swarm optimization
  publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Springer Verlag
– volume: 1
  start-page: 3
  year: 2016
  ident: 10.1016/j.swevo.2022.101070_bib0002
  article-title: Uncertainty in deep learning
  publication-title: Univ. Cambridge.
– volume: 12
  start-page: 1278
  year: 2001
  ident: 10.1016/j.swevo.2022.101070_bib0008
  article-title: Confidence estimation methods for neural networks: A practical comparison
  publication-title: IEEE Trans. Neural Networks.
  doi: 10.1109/72.963764
– start-page: 37
  year: 2003
  ident: 10.1016/j.swevo.2022.101070_bib0050
  article-title: A non-dominated sorting particle swarm optimizer for multiobjective optimization
  publication-title: Genet. Evol. Comput. Conf.
– volume: 27
  start-page: 2683
  year: 2016
  ident: 10.1016/j.swevo.2022.101070_bib0017
  article-title: Landslide displacement prediction with uncertainty based on neural networks with random hidden weights
  publication-title: IEEE Trans. Neur. Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2512283
– volume: 418
  start-page: 363
  year: 2017
  ident: 10.1016/j.swevo.2022.101070_bib0010
  article-title: Multi-objective evolutionary optimization of prediction intervals for solar energy forecasting with neural networks
  publication-title: Inf. Sci. (Ny).
  doi: 10.1016/j.ins.2017.08.039
– volume: 39
  start-page: 3
  year: 2007
  ident: 10.1016/j.swevo.2022.101070_bib0028
  article-title: Why has U.S. inflation become harder to forecast?
  publication-title: J. Money, Credit Bank
  doi: 10.1111/j.1538-4616.2007.00014.x
– year: 2013
  ident: 10.1016/j.swevo.2022.101070_bib0016
– volume: 0
  start-page: 1
  year: 2019
  ident: 10.1016/j.swevo.2022.101070_bib0029
  article-title: Forecasting inflation in a data-rich environment: the benefits of machine learning methods
  publication-title: J. Bus. Econ. Stat.
– year: 2007
  ident: 10.1016/j.swevo.2022.101070_bib0046
– start-page: 106
  year: 2011
  ident: 10.1016/j.swevo.2022.101070_bib0055
  article-title: On the computation of the empirical attainment function
  publication-title: Int. Conf. Evol. Multi-Criterion Optim.
  doi: 10.1007/978-3-642-19893-9_8
– volume: 36
  start-page: 136
  year: 2017
  ident: 10.1016/j.swevo.2022.101070_bib0031
  article-title: Financial time series prediction using hybrids of chaos theory, multi-layer perceptron and multi-objective evolutionary algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.05.003
– volume: 10
  start-page: 921
  year: 2013
  ident: 10.1016/j.swevo.2022.101070_bib0001
  article-title: Points of Significance: Error bars
  publication-title: Nat. Methods.
  doi: 10.1038/nmeth.2659
– year: 2019
  ident: 10.1016/j.swevo.2022.101070_bib0026
  article-title: Macroeconomic forecasting in india: does machine learning hold the key to better forecasts?
– start-page: 373
  year: 2005
  ident: 10.1016/j.swevo.2022.101070_bib0027
  article-title: Inflation forecasting using a neural network
  publication-title: Econ. Lett. 86
  doi: 10.1016/j.econlet.2004.09.003
– volume: 8
  start-page: 185
  year: 2018
  ident: 10.1016/j.swevo.2022.101070_bib0020
  article-title: Wind power forecasting using multi-objective evolutionary algorithms for wavelet neural network-optimized prediction intervals
  publication-title: Appl. Sci.
  doi: 10.3390/app8020185
– volume: 8
  start-page: 152
  year: 1996
  ident: 10.1016/j.swevo.2022.101070_bib0011
  article-title: A comparison of some error estimates for neural network models
  publication-title: Neur. Comput.
  doi: 10.1162/neco.1996.8.1.152
– volume: 22
  start-page: 337
  year: 2011
  ident: 10.1016/j.swevo.2022.101070_bib0005
  article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals
  publication-title: IEEE Trans. Neur. Netw.
  doi: 10.1109/TNN.2010.2096824
– volume: 1
  start-page: 129
  year: 1938
  ident: 10.1016/j.swevo.2022.101070_bib0012
  article-title: A note on the delta-method for finding variance formulae
  publication-title: Biometr. Bull.
– volume: 43
  start-page: 601
  year: 2010
  ident: 10.1016/j.swevo.2022.101070_bib0039
  article-title: Approximating the volume of unions and intersections of high-dimensional geometric objects
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2010.03.004
– year: 2018
  ident: 10.1016/j.swevo.2022.101070_bib0006
  article-title: High-quality prediction intervals for deep learning: a distribution-free, ensembled approach
– volume: 59
  start-page: 67
  year: 1991
  ident: 10.1016/j.swevo.2022.101070_bib0051
  article-title: Directionality and reversibility in time series
  publication-title: Int. Stat. Rev. /Rev. Int. Stat.
  doi: 10.2307/1403575
SSID ssj0000602559
Score 2.2540112
Snippet In a first-of-its-kind study, this paper formulates the problem of estimating the prediction intervals (PIs) in a macroeconomic time series as a bi-objective...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101070
SubjectTerms Bi-objective optimization
Chaos
Evolutionary multiobjective optimization algorithms
Macroeconomic time series
Prediction intervals
Title Optimal prediction intervals for macroeconomic time series using chaos and evolutionary multi-objective optimization algorithms
URI https://dx.doi.org/10.1016/j.swevo.2022.101070
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3ojlJR-4laxSk-dxhRYBQguiBfUWTRyHprTJknbTvXHifzNjO2m7RStA4hJVVv1Ivi_2zGQejD0PpUAlIc4cBXHoeMJTDqDa7PgKfHgJIgpyXbXkfXh6Gk0m8cde72cbC9PMw7KMLi7is_8KNbYh2BQ6-xdwd4NiA_5G0PGKsOP1j4D_gJvAguKravoGY30ZybGREiWTU-ECcPNVNiBZF5cf0MLUcnBuQnCnUJnMzaqxKyXXOu166FTpzGyRg4rmsVGcA5h_repiNbW5z620O1pDvdgfSepKEjsuACOoG7Vc05cP0MbbL1Di2dWdGZ-gKUxzhhSGstjQ8bs24E6h-DYYQ9koSqs43zZmoB7cOV0ZC9telA1thALVUgclyZ1d2xRu2TsAjC1idrRc440d0RTU5priJJcya49oYBpXULwSiirX2IEI_Tjqs4PjtyeTd52xzg206kWFCtu1tBmstK_g3my_l3K2JJfxbXbTqhz82FDlDuup8i671Zbz4HZ3v8d-WObwDXN4xxyOzOE7zOHEHG6YwzVzuGYOR7z5Nt78EnP4NnP4hjn32efXJ-NXbxxbn8ORqETj-yxzLwsDP05hGAYQ-l6WZm6QRxmg0hqEbh7kkpKR-gqfWjZ0lQAUhVSOQiREKEc-YP2yKtVDxqVQKSoWeeSnvqdElnoSD4Y0xw4BSDU8ZKJ9nom0yeuphso8ab0UZ4kGISEQEgPCIXvRdTozuVuu_nvQApVY8dOIlQmS66qOj_6142N2Y_MSPGH9VX2unrLrslkVy_qZJeEv4xO1Vg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+prediction+intervals+for+macroeconomic+time+series+using+chaos+and+evolutionary+multi-objective+optimization+algorithms&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Sarveswararao%2C+Vangala&rft.au=Ravi%2C+Vadlamani&rft.au=Huq%2C+Shaik+Tanveer+Ul&rft.date=2022-06-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=71&rft_id=info:doi/10.1016%2Fj.swevo.2022.101070&rft.externalDocID=S2210650222000426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon