RETRACTED: DAE‐GAN: An autoencoder based adversarial network for Gaussian denoising

Image denoising is one of the most classic problems in computer vision for restoring corrupted images. It has been approached by using various traditional state of the art architectures in convolutional neural network (CNN), which has demonstrated considerably better results than the prior methods....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems Jg. 42; H. 2
Hauptverfasser: Samanta, Abhishek, Saha, Aheli, Satapathy, Suresh Chandra, Lin, Hong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.02.2025
Schlagworte:
ISSN:0266-4720, 1468-0394
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Image denoising is one of the most classic problems in computer vision for restoring corrupted images. It has been approached by using various traditional state of the art architectures in convolutional neural network (CNN), which has demonstrated considerably better results than the prior methods. There has been recent advancements in approaching the problem using generative adversarial networks (GAN), which has shown considerable promise. In this paper, we propose a novel denoising adversarial architecture to generate denoised image samples from a noisy distribution. A denoising autoencoder has been employed as the Generator to learn image distributions and generate denoised images while the discriminator penalizes the generated output. We employ an additive loss comprising of root mean square and mean absolute error for the Generator function. The model is trained adversarially followed by extensive experiments. We achieved PSNR and SSIM values comparable to the state‐of‐the‐art for a range of blind and non‐blind Gaussian noise.
AbstractList Image denoising is one of the most classic problems in computer vision for restoring corrupted images. It has been approached by using various traditional state of the art architectures in convolutional neural network (CNN), which has demonstrated considerably better results than the prior methods. There has been recent advancements in approaching the problem using generative adversarial networks (GAN), which has shown considerable promise. In this paper, we propose a novel denoising adversarial architecture to generate denoised image samples from a noisy distribution. A denoising autoencoder has been employed as the Generator to learn image distributions and generate denoised images while the discriminator penalizes the generated output. We employ an additive loss comprising of root mean square and mean absolute error for the Generator function. The model is trained adversarially followed by extensive experiments. We achieved PSNR and SSIM values comparable to the state‐of‐the‐art for a range of blind and non‐blind Gaussian noise.
Author Satapathy, Suresh Chandra
Lin, Hong
Samanta, Abhishek
Saha, Aheli
Author_xml – sequence: 1
  givenname: Abhishek
  orcidid: 0000-0001-7502-7070
  surname: Samanta
  fullname: Samanta, Abhishek
  email: abhisheksamanta60@gmail.com
  organization: Kalinga Institute of Industrial Technology (Deemed to be University)
– sequence: 2
  givenname: Aheli
  surname: Saha
  fullname: Saha, Aheli
  email: ahelis340@gmail.com
  organization: Kalinga Institute of Industrial Technology (Deemed to be University)
– sequence: 3
  givenname: Suresh Chandra
  orcidid: 0000-0001-8236-4104
  surname: Satapathy
  fullname: Satapathy, Suresh Chandra
  organization: Kalinga Institute of Industrial Technology (Deemed to be University)
– sequence: 4
  givenname: Hong
  surname: Lin
  fullname: Lin, Hong
  email: linh@uhd.edu
  organization: University of Houston Downtown
BookMark eNp9kEFOwzAURC1UJEphwwkssUNKsRPHSbqL2lCQKpBKkGBluckPcgl2sVNKdxyBM3ISUsIKIf5mNm_mj-YQ9bTRgNAJJUPa3jm8ue2Q-hFJ9lCfMh57JEhYD_WJz7nHIp8coEPnloQQGkW8j-7mWT5Px3k2GeFJmn2-f0zT6xFONZbrxoAuTAkWL6SDEsvyFayTVskaa2g2xj7hylg8lWvnlNS4BG2UU_rxCO1XsnZw_KMDlF9k-fjSm91Mr8bpzCvabokXBhHjLAkJkUFYSR6HRFYsLoMAGI3axrKKFouoIkUShqXPfEYoB0howWKAKhig0y52Zc3LGlwjlmZtdftRBDTkfkwCxlrqrKMKa5yzUImVVc_SbgUlYrea2K0mvldrYfILLlQjG2V0Y6Wq_7bQzrJRNWz_CRfZ_e1D5_kCvvGAyQ
CitedBy_id crossref_primary_10_2478_amns_2023_2_01565
crossref_primary_10_1111_exsy_13504
crossref_primary_10_1088_1361_6501_ad99f2
crossref_primary_10_1109_TGRS_2022_3217402
Cites_doi 10.1109/TIP.2012.2235847
10.1109/TIP.2017.2662206
10.1177/1550147720923529
10.1201/9780367806941
10.1007/978-3-642-34481-7_42
10.1109/CVPR.2012.6247952
10.1109/TIP.2007.901238
10.1109/CVPR.2014.366
10.1109/CVPR.2018.00333
10.1109/CVPR.2018.00338
10.1109/CVPR.2017.19
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/exsy.12709
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1468-0394
EndPage n/a
ExternalDocumentID 10_1111_exsy_12709
EXSY12709
Genre article
Correction/Retraction
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0B8
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
77I
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c1469-5374649500a35fa6850af48d33e417266af7bb7f0c955d2424016ee91c48eef3
IEDL.DBID DRFUL
ISSN 0266-4720
IngestDate Sat Nov 29 14:55:54 EST 2025
Sat Nov 29 07:20:10 EST 2025
Tue Nov 18 22:01:32 EST 2025
Fri Jan 17 09:36:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1469-5374649500a35fa6850af48d33e417266af7bb7f0c955d2424016ee91c48eef3
Notes ObjectType-Correction/Retraction-1
SourceType-Scholarly Journals-1
content type line 14
ORCID 0000-0001-7502-7070
0000-0001-8236-4104
PQID 3156280344
PQPubID 32130
PageCount 7
ParticipantIDs proquest_journals_3156280344
crossref_primary_10_1111_exsy_12709
crossref_citationtrail_10_1111_exsy_12709
wiley_primary_10_1111_exsy_12709_EXSY12709
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Expert systems
PublicationYear 2025
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 11
2012
2017; 26
2020
2019; 79
2020; 16
2018
2017
2008; 21
2016
2004
2015
2014
2012; 22
2007; 16
Larsen A. B. L. (e_1_2_9_11_1) 2016
e_1_2_9_10_1
e_1_2_9_13_1
Zhong Y. (e_1_2_9_20_1) 2019; 79
e_1_2_9_12_1
Motwani M. C. (e_1_2_9_14_1) 2004
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
Vincent P. (e_1_2_9_16_1) 2010; 11
Yan Q. (e_1_2_9_18_1) 2017
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Hong Z. (e_1_2_9_8_1) 2020
e_1_2_9_15_1
e_1_2_9_17_1
Jain V. (e_1_2_9_9_1) 2008; 21
e_1_2_9_19_1
References_xml – volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  end-page: 2095
  article-title: Image denoising by sparse 3‐D transform‐domain collaborative filtering
  publication-title: IEEE Transactions on Image Processing
– volume: 21
  start-page: 769
  year: 2008
  end-page: 776
  article-title: Natural image denoising with convolutional networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  end-page: 3408
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– start-page: 341
  year: 2012
  end-page: 349
– start-page: 2862
  year: 2014
  end-page: 2869
– start-page: 4140
  year: 2020
  end-page: 4149
– volume: 79
  start-page: 1
  year: 2019
  end-page: 13
  article-title: A generative adversarial network for image denoising
  publication-title: Multimedia Tools and Applications
– start-page: 1558
  year: 2016
  end-page: 1566
– year: 2020
– volume: 16
  issue: 5
  year: 2020
  article-title: DNAE‐GAN: Noise‐free acoustic signal generator by integrating autoencoder and generative adversarial network
  publication-title: International Journal of Distributed Sensor Networks,
– start-page: 3204
  year: 2018
  end-page: 3213
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  end-page: 3155
  article-title: Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising
  publication-title: IEEE Transactions on Image Processing
– start-page: 487
  year: 2017
  end-page: 495
– start-page: 3155
  year: 2018
  end-page: 3164
– start-page: 4681
  year: 2017
  end-page: 4690
– start-page: 27
  year: 2004
  end-page: 30
– start-page: 2392
  year: 2012
  end-page: 2399
– volume: 22
  start-page: 1620
  issue: 4
  year: 2012
  end-page: 1630
  article-title: Nonlocally centralized sparse representation for image restoration
  publication-title: IEEE Transactions on Image Processing
– year: 2015
– volume: 21
  start-page: 769
  year: 2008
  ident: e_1_2_9_9_1
  article-title: Natural image denoising with convolutional networks
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_9_6_1
  doi: 10.1109/TIP.2012.2235847
– start-page: 1558
  volume-title: International Conference on Machine Learning
  year: 2016
  ident: e_1_2_9_11_1
– ident: e_1_2_9_19_1
  doi: 10.1109/TIP.2017.2662206
– ident: e_1_2_9_10_1
  doi: 10.1177/1550147720923529
– volume: 79
  start-page: 1
  year: 2019
  ident: e_1_2_9_20_1
  article-title: A generative adversarial network for image denoising
  publication-title: Multimedia Tools and Applications
– ident: e_1_2_9_2_1
  doi: 10.1201/9780367806941
– ident: e_1_2_9_17_1
  doi: 10.1007/978-3-642-34481-7_42
– ident: e_1_2_9_3_1
  doi: 10.1109/CVPR.2012.6247952
– ident: e_1_2_9_5_1
  doi: 10.1109/TIP.2007.901238
– ident: e_1_2_9_7_1
  doi: 10.1109/CVPR.2014.366
– start-page: 27
  volume-title: Proceedings of GSPX
  year: 2004
  ident: e_1_2_9_14_1
– ident: e_1_2_9_4_1
  doi: 10.1109/CVPR.2018.00333
– ident: e_1_2_9_15_1
– ident: e_1_2_9_13_1
  doi: 10.1109/CVPR.2018.00338
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: e_1_2_9_16_1
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– start-page: 4140
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2020
  ident: e_1_2_9_8_1
– ident: e_1_2_9_12_1
  doi: 10.1109/CVPR.2017.19
– start-page: 487
  volume-title: Advances in neural information processing systems
  year: 2017
  ident: e_1_2_9_18_1
SSID ssj0001776
Score 2.3455129
SecondaryResourceType retracted_publication
Snippet Image denoising is one of the most classic problems in computer vision for restoring corrupted images. It has been approached by using various traditional...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms computer vision
convolutional neural networks
deep learning
generating adversarial networks
Title RETRACTED: DAE‐GAN: An autoencoder based adversarial network for Gaussian denoising
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.12709
https://www.proquest.com/docview/3156280344
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MzQdfnFecTgnoi0KlXZI2Hb6U3XwYQ-Ym86mkbQID6WTdRN_8Cf5Gf4lJ124TRBCfWsppKcm5fCfJOR_AhXrqRjUmDIuIwCAUmwbDVmDgiEksVE4UphVyD12n12OjkXtXgJu8FmbRH2K54KYtI_XX2sB5kKwZuXhN3q71vqm7ASV1waQIpWa_PewuPbHlpORyKs2wDeLUzKw9qT7Js3r7e0Baocx1rJoGm3b5f7-5A9sZyETeQit2oSDiPSjnBA4os-d9GPZbg77XUM6rjppe6_P9o-P16siLEZ_PJrrFZaTEdaCLENfMzQnX-orixdlxpAAv6vB5ogsxkXJgk7FeeTiAQbs1aNwaGc-CESo_6RoUO8RWiZJpckwltxk1uSQswlgQhW9sm0snCBxphi6lka4nUThRCNcKCRNC4kMoxpNYHAFinDCTmoIKmxEieKCyUzfgChNKKkNLVuAyH2s_zHqQayqMJz_PRfRw-elwVeB8Kfu86Lzxo1Q1nzI_s77Exyop1axbhFTgKp2cX77gt0b3j-nd8V-ET2CrpqmA0wPcVSjOpnNxCpvhy2ycTM8yTfwCKnbhvg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60CnqxPrE-F_SiEEm6u8mmt6CtirVIrVJPYZPsQkFSMa3ozZ_gb_SXuJOmVUEE8RbCJITdeXyzmZkPYN_c9ZOqUJbDVGQxTm1LUCeyaCI0VSYnivMOudum12qJbte_KmpzsBdmNB9icuCGlpH7azRwPJD-YuXqOXs5wh-n_jTMMKNHvAQzJ-3GTXPiih0vZ5czeYZrMa9qF_NJsZTn8-nvEekTZn4Fq3m0aZT_-Z2LsFDATBKM9GIJplS6DOUxhQMpLHoFbtr1Tjs4Nu6rRk6C-vvr22nQqpEgJXI46OOQy8SIY6hLiETu5kyixpJ0VD1ODOQlp3KYYSsmMS6s38Ozh1XoNOqd4zOrYFqwYuMpfYtTj7kmVbJtSbmWruC21EwklCpmEI7rSu1Fkaft2Oc8wY4SgxSV8p2YCaU0XYNS2k_VOhAhmbC5rbhyBWNKRiY_9SNpUKHmOnZ0BQ7Gix3GxRRyJMO4D8fZCC5XmC9XBfYmsg-j2Rs_Sm2N9yws7C8LqUlLkXeLsQoc5rvzyxvCevf6Lr_a-IvwLsyddS6bYfO8dbEJ81UkBs7LubegNHgcqm2YjZ8Gvexxp1DLD7P-5a4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UinixPrE-F_SiEEm6u8nGW-hLsZRSW6mnsEl2oSBpMa3ozZ_gb_SXuJsmbQURxFsIkxB25_HNZmY-gHN1143KTBgWEYFBKDYNhq3AwBGTWKicKEw75B6aTqvF-n23ndXm6F6Y6XyI2YGbtozUX2sDF6NILli5eE3ervSPU3cZCoS6trLLQrVT7zVnrthyUnY5lWfYBnHKZjafVJfyzJ_-HpHmMHMRrKbRpl7853duwkYGM5E31YstWBLxNhRzCgeUWfQO9Dq1bserKPd1jape7fP9o-G1rpEXIz4ZD_WQy0iJ61AXIa65mxOuNRbF0-pxpCAvavBJolsxkXJhw4E-e9iFbr3WrdwYGdOCESpP6RoUO8RWqZJpckwltxk1uSQswlgQhXBsm0snCBxphi6lke4oUUhRCNcKCRNC4j1YiYex2AfEOGEmNQUVNiNE8EDlp27AFSqUVIaWLMFFvth-mE0h12QYT36ejejl8tPlKsHZTHY0nb3xo9RRvmd-Zn-Jj1Vaqnm3CCnBZbo7v7zBr_XvH9Org78In8Jau1r3m7etu0NYL2te4LSa-whWxs8TcQyr4ct4kDyfZFr5BWXq5Sk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RETRACTED%3A+DAE%E2%80%90GAN%3A+An+autoencoder+based+adversarial+network+for+Gaussian+denoising&rft.jtitle=Expert+systems&rft.au=Samanta%2C+Abhishek&rft.au=Saha%2C+Aheli&rft.au=Satapathy%2C+Suresh+Chandra&rft.au=Lin%2C+Hong&rft.date=2025-02-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=42&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fexsy.12709&rft.externalDBID=10.1111%252Fexsy.12709&rft.externalDocID=EXSY12709
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon