An Enhanced Discrete Hummingbird Algorithm With Reinforcement Learning for Efficient Hybrid Flow Shop Scheduling

ABSTRACT To overcome the limitations of the artificial hummingbird algorithm (AHA), such as slow convergence and its inability to address discrete optimization problems, this paper proposes an improved Q‐learning‐based discrete artificial hummingbird algorithm (QIDAHA). The original foraging strateg...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Concurrency and computation Ročník 37; číslo 27-28
Hlavní autoři: Zhou, Ning, Zhou, Zhiwei, Yao, Jing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 25.12.2025
Témata:
ISSN:1532-0626, 1532-0634
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT To overcome the limitations of the artificial hummingbird algorithm (AHA), such as slow convergence and its inability to address discrete optimization problems, this paper proposes an improved Q‐learning‐based discrete artificial hummingbird algorithm (QIDAHA). The original foraging strategies of AHA are discretized, and a tailored model for the hybrid flow‐shop scheduling problem (HFSP) is constructed, with specifically designed encoding and decoding mechanisms. By integrating reinforcement learning, Q‐learning is employed to adaptively select the optimal flight directions of hummingbirds according to environmental states and feedback, while an ϵ$$ \upvarepsilon $$‐convergence factor balances exploration and exploitation during action selection. In addition, an elite neighborhood optimization strategy is introduced in the later search stages to accelerate convergence and enhance solution accuracy. The effectiveness of QIDAHA is validated on three small‐scale and 10 large‐scale HFSP benchmark instances, and its performance is compared against several state‐of‐the‐art discrete algorithms. Experimental results show that QIDAHA achieves superior scheduling performance, with an average optimal makespan of 604.6 on large‐scale problems, outperforming SHPSO (613.5), PSO (632.5), DWOA (645.1), IDDE (631.3), DSSA (623.4), and DAHA (613.2). This study not only extends the applicability of AHA to discrete scheduling but also provides an efficient and reliable approach to solving HFSP. The proposed algorithm demonstrates both theoretical significance and practical value for optimizing complex manufacturing systems. Finally, the structure of this paper is organized as follows: Chapter 1 introduces the overall background; Chapter 2 presents the traditional Artificial Hummingbird Algorithm (AHA); Chapter 3 describes its discrete version; Chapter 4 analyzes the shortcomings of the discrete AHA and introduces the Qlearning–enhanced improvements; Chapter 5 reports the experimental studies; and Chapter 6 provides the overall conclusions.
AbstractList ABSTRACT To overcome the limitations of the artificial hummingbird algorithm (AHA), such as slow convergence and its inability to address discrete optimization problems, this paper proposes an improved Q‐learning‐based discrete artificial hummingbird algorithm (QIDAHA). The original foraging strategies of AHA are discretized, and a tailored model for the hybrid flow‐shop scheduling problem (HFSP) is constructed, with specifically designed encoding and decoding mechanisms. By integrating reinforcement learning, Q‐learning is employed to adaptively select the optimal flight directions of hummingbirds according to environmental states and feedback, while an ϵ$$ \upvarepsilon $$‐convergence factor balances exploration and exploitation during action selection. In addition, an elite neighborhood optimization strategy is introduced in the later search stages to accelerate convergence and enhance solution accuracy. The effectiveness of QIDAHA is validated on three small‐scale and 10 large‐scale HFSP benchmark instances, and its performance is compared against several state‐of‐the‐art discrete algorithms. Experimental results show that QIDAHA achieves superior scheduling performance, with an average optimal makespan of 604.6 on large‐scale problems, outperforming SHPSO (613.5), PSO (632.5), DWOA (645.1), IDDE (631.3), DSSA (623.4), and DAHA (613.2). This study not only extends the applicability of AHA to discrete scheduling but also provides an efficient and reliable approach to solving HFSP. The proposed algorithm demonstrates both theoretical significance and practical value for optimizing complex manufacturing systems. Finally, the structure of this paper is organized as follows: Chapter 1 introduces the overall background; Chapter 2 presents the traditional Artificial Hummingbird Algorithm (AHA); Chapter 3 describes its discrete version; Chapter 4 analyzes the shortcomings of the discrete AHA and introduces the Qlearning–enhanced improvements; Chapter 5 reports the experimental studies; and Chapter 6 provides the overall conclusions.
To overcome the limitations of the artificial hummingbird algorithm (AHA), such as slow convergence and its inability to address discrete optimization problems, this paper proposes an improved Q‐learning‐based discrete artificial hummingbird algorithm (QIDAHA). The original foraging strategies of AHA are discretized, and a tailored model for the hybrid flow‐shop scheduling problem (HFSP) is constructed, with specifically designed encoding and decoding mechanisms. By integrating reinforcement learning, Q‐learning is employed to adaptively select the optimal flight directions of hummingbirds according to environmental states and feedback, while an ‐convergence factor balances exploration and exploitation during action selection. In addition, an elite neighborhood optimization strategy is introduced in the later search stages to accelerate convergence and enhance solution accuracy. The effectiveness of QIDAHA is validated on three small‐scale and 10 large‐scale HFSP benchmark instances, and its performance is compared against several state‐of‐the‐art discrete algorithms. Experimental results show that QIDAHA achieves superior scheduling performance, with an average optimal makespan of 604.6 on large‐scale problems, outperforming SHPSO (613.5), PSO (632.5), DWOA (645.1), IDDE (631.3), DSSA (623.4), and DAHA (613.2). This study not only extends the applicability of AHA to discrete scheduling but also provides an efficient and reliable approach to solving HFSP. The proposed algorithm demonstrates both theoretical significance and practical value for optimizing complex manufacturing systems. Finally, the structure of this paper is organized as follows: Chapter 1 introduces the overall background; Chapter 2 presents the traditional Artificial Hummingbird Algorithm (AHA); Chapter 3 describes its discrete version; Chapter 4 analyzes the shortcomings of the discrete AHA and introduces the Qlearning–enhanced improvements; Chapter 5 reports the experimental studies; and Chapter 6 provides the overall conclusions.
Author Yao, Jing
Zhou, Zhiwei
Zhou, Ning
Author_xml – sequence: 1
  givenname: Ning
  orcidid: 0000-0001-7466-8925
  surname: Zhou
  fullname: Zhou, Ning
  email: zhouning@lzjtu.edu.cn
  organization: Lanzhou Jiaotong University
– sequence: 2
  givenname: Zhiwei
  surname: Zhou
  fullname: Zhou, Zhiwei
  organization: Lanzhou Jiaotong University
– sequence: 3
  givenname: Jing
  surname: Yao
  fullname: Yao, Jing
  organization: Lanzhou Jiaotong University
BookMark eNp1kMFKw0AQhhepYFs9-AZ79ZB2J5vsdo-lplYoKFbxGJLNbLOSbMKmpeTtTa148zIz_HwzMN-EjFzjkJB7YDNgLJzrFmeSRUxdkTHEPAyY4NHobw7FDZl03RdjAIzDmLRLRxNXZk5jQR9tpz0ekG6OdW3dPre-oMtq33h7KGv6OVT6htaZxmus0R3oFjPvBpIOEU2Msdqe402fe1vQddWc6K5sWrrTJRbHaiBvybXJqg7vfvuUfKyT99Um2L48Pa-W20BDJFQQKQ25YFCY0KCCuBheYjwywGERLoQ2Ktc5lxkgByNioWUuVVxIKWKdRUryKXm43NW-6TqPJm29rTPfp8DSs6p0UJX-qBrY-YU92Qr7_8F09ZpcNr4BllZtEA
Cites_doi 10.1016/j.cor.2025.107079
10.1007/s11227-025-07234-6
10.1016/j.compstruc.2024.107496
10.1016/j.asoc.2012.01.011
10.1007/s00500-023-08530-0
10.1002/widm.1548
10.3390/electronics14030403
10.1016/j.cie.2025.111062
10.1007/BF00992698
10.3390/en17246411
10.1016/j.cma.2021.114194
10.1016/j.swevo.2025.101936
10.1016/j.swevo.2025.101932
10.1016/j.cie.2024.110324
10.1038/s41598-025-89089-8
10.1177/14759217241233733
10.3390/math12172708
10.1016/j.measurement.2025.117984
10.1002/cpe.70090
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
DOI 10.1002/cpe.70409
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_70409
CPE70409
Genre researchArticle
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O8X
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c1469-49c1b601df2fe915d409034f1318286cf9bcb37a1e31f656c7b795d7765ca4973
IEDL.DBID DRFUL
ISSN 1532-0626
IngestDate Thu Nov 27 01:03:27 EST 2025
Tue Nov 25 09:20:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 27-28
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1469-49c1b601df2fe915d409034f1318286cf9bcb37a1e31f656c7b795d7765ca4973
ORCID 0000-0001-7466-8925
PageCount 19
ParticipantIDs crossref_primary_10_1002_cpe_70409
wiley_primary_10_1002_cpe_70409_CPE70409
PublicationCentury 2000
PublicationDate 25 December 2025
2025-12-25
PublicationDateYYYYMMDD 2025-12-25
PublicationDate_xml – month: 12
  year: 2025
  text: 25 December 2025
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle Concurrency and computation
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2025; 255
2025; 81
2025; 203
1992; 8
2021; 32
2025; 181
2024; 303
2019; 30
2022; 50
2025; 15
2025; 37
2025; 24
2024; 12
2025; 14
2024
2024; 14
2012; 12
2024; 17
2024; 28
2025; 95
2022; 388
2024; 193
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
Du L. (e_1_2_8_20_1) 2019; 30
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Xie M. (e_1_2_8_25_1) 2024
Zhou N. (e_1_2_8_22_1) 2022; 50
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
Zhang Y. (e_1_2_8_24_1) 2021; 32
e_1_2_8_10_1
e_1_2_8_21_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_23_1
References_xml – volume: 255
  year: 2025
  article-title: A Modified Artificial Hummingbird Algorithm Tuning Optimal Process Noise Covariance and Measurement Noise Covariance for the Kalman Filter in the Noise Reduction Analysis of Steering Angle Sensors in Small Electric Vehicle
  publication-title: Measurement
– volume: 12
  start-page: 1755
  issue: 6
  year: 2012
  end-page: 1764
  article-title: An Approach Using Particle Swarm Optimization and Bottleneck Heuristic to Solve Hybrid Flow Shop Scheduling Problem
  publication-title: Applied Soft Computing
– volume: 32
  start-page: 714
  issue: 6
  year: 2021
  end-page: 720
  article-title: Improved Differential Evolution Algorithm for Solving Mixed Flow Shop Scheduling Problem
  publication-title: China Mechanical Engineering
– volume: 388
  year: 2022
  article-title: Artificial Hummingbird Algorithm: A New Bio‐Inspired Optimizer With Its Engineering Applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 14
  issue: 6
  year: 2024
  article-title: Advancements in Q‐Learning Meta‐Heuristic Optimization Algorithms: A Survey
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 181
  year: 2025
  article-title: A Trajectory‐Based Algorithm Enhanced by Q‐Learning and Cloud Integration for Hybrid Flexible Flowshop Scheduling Problem With Sequence‐Dependent Setup Times: A Case Study
  publication-title: Computers & Operations Research
– volume: 81
  start-page: 1
  issue: 6
  year: 2025
  end-page: 32
  article-title: An Improved Discrete Harris Hawks Optimization Algorithm for the No‐Wait Job Shop Problem to Minimize Total Weighted Tardiness
  publication-title: Journal of Supercomputing
– volume: 14
  issue: 3
  year: 2025
  article-title: Dynamic Adaptive Artificial Hummingbird Algorithm‐Enhanced Deep Learning Framework for Accurate Transmission Line Temperature Prediction
  publication-title: Electronics
– volume: 28
  start-page: 2535
  issue: 3
  year: 2024
  end-page: 2562
  article-title: An Improved Probability‐Based Discrete Particle Swarm Optimization Algorithm for Solving the Product Portfolio Planning Problem
  publication-title: Soft Computing
– volume: 15
  issue: 1
  year: 2025
  article-title: Optimized Placement of Distributed Generators, Capacitors, and Ev Charging Stations in Reconfigured Radial Distribution Networks Using Enhanced Artificial Hummingbird Algorithm
  publication-title: Scientific Reports
– volume: 8
  start-page: 279
  year: 1992
  end-page: 292
  article-title: Q‐Learning
  publication-title: Machine Learning
– volume: 24
  start-page: 129
  issue: 1
  year: 2025
  end-page: 147
  article-title: Damage Detection and Location Using a Simulated Annealing‐Artificial Hummingbird Algorithm With an Improved Objective Function
  publication-title: Structural Health Monitoring
– volume: 193
  year: 2024
  article-title: An Improved Co‐Evolutionary Memetic Algorithm Based on Novel Schedule Type and Unconditional Feasibility for Hybrid Flow‐Shop Scheduling Problem
  publication-title: Computers & Industrial Engineering
– volume: 12
  issue: 17
  year: 2024
  article-title: An Improved Particle Swarm Optimization Algorithm Based on Variable Neighborhood Search
  publication-title: Mathematics
– year: 2024
– volume: 37
  issue: 9–11
  year: 2025
  article-title: Discrete Gray Wolf Optimizer for Solving Distributed Permutation Flowshop Scheduling Problem
  publication-title: Concurrency and Computation: Practice and Experience
– volume: 50
  start-page: 398
  issue: 2
  year: 2022
  end-page: 408
  article-title: A Discrete Sparrow Search Algorithm for Solving Hfsp With Rough Data Inference
  publication-title: Journal of Beijing University of Aeronautics and Astronautics
– volume: 17
  issue: 24
  year: 2024
  article-title: Research on the Economic Scheduling Problem of Cogeneration Based on the Improved Artificial Hummingbird Algorithm
  publication-title: Energies
– volume: 203
  year: 2025
  article-title: A Genetic Programming Based Reinforcement Learning Algorithm for Dynamic Hybrid Flow Shop Scheduling With Reworks Under General Queue Time Limits
  publication-title: Computers & Industrial Engineering
– volume: 95
  year: 2025
  article-title: Multi‐Objective Evolutionary Co‐Learning Framework for Energy‐Efficient Hybrid Flow‐Shop Scheduling Problem With Human‐Machine Collaboration
  publication-title: Swarm and Evolutionary Computation
– volume: 303
  year: 2024
  article-title: A Hybridization of Growth Optimizer and Improved Arithmetic Optimization Algorithm and Its Application to Discrete Structural Optimization
  publication-title: Computers and Structures
– volume: 30
  start-page: 1480
  issue: 12
  year: 2019
  end-page: 1485
  article-title: A Fruit Fly Optimization Algorithm for Mixed Flow Shop Scheduling Problem
  publication-title: China Mechanical Engineering
– volume: 95
  year: 2025
  article-title: Selection Hyperheuristic With Knowledge‐Based q‐Learning for Dynamic Distributed Hybrid Flow Shop Scheduling Problem Considering Operation Inspection
  publication-title: Swarm and Evolutionary Computation
– volume: 50
  start-page: 398
  issue: 2
  year: 2022
  ident: e_1_2_8_22_1
  article-title: A Discrete Sparrow Search Algorithm for Solving Hfsp With Rough Data Inference
  publication-title: Journal of Beijing University of Aeronautics and Astronautics
– ident: e_1_2_8_10_1
  doi: 10.1016/j.cor.2025.107079
– ident: e_1_2_8_13_1
  doi: 10.1007/s11227-025-07234-6
– ident: e_1_2_8_15_1
  doi: 10.1016/j.compstruc.2024.107496
– ident: e_1_2_8_21_1
  doi: 10.1016/j.asoc.2012.01.011
– ident: e_1_2_8_17_1
  doi: 10.1007/s00500-023-08530-0
– ident: e_1_2_8_8_1
  doi: 10.1002/widm.1548
– ident: e_1_2_8_4_1
  doi: 10.3390/electronics14030403
– volume: 30
  start-page: 1480
  issue: 12
  year: 2019
  ident: e_1_2_8_20_1
  article-title: A Fruit Fly Optimization Algorithm for Mixed Flow Shop Scheduling Problem
  publication-title: China Mechanical Engineering
– ident: e_1_2_8_9_1
  doi: 10.1016/j.cie.2025.111062
– ident: e_1_2_8_18_1
  doi: 10.1007/BF00992698
– volume: 32
  start-page: 714
  issue: 6
  year: 2021
  ident: e_1_2_8_24_1
  article-title: Improved Differential Evolution Algorithm for Solving Mixed Flow Shop Scheduling Problem
  publication-title: China Mechanical Engineering
– volume-title: Research on Flow Shop Scheduling Problem Based on Adaptive Hybrid Particle Swarm Algorithm
  year: 2024
  ident: e_1_2_8_25_1
– ident: e_1_2_8_6_1
  doi: 10.3390/en17246411
– ident: e_1_2_8_2_1
  doi: 10.1016/j.cma.2021.114194
– ident: e_1_2_8_11_1
  doi: 10.1016/j.swevo.2025.101936
– ident: e_1_2_8_12_1
  doi: 10.1016/j.swevo.2025.101932
– ident: e_1_2_8_19_1
  doi: 10.1016/j.cie.2024.110324
– ident: e_1_2_8_23_1
– ident: e_1_2_8_3_1
  doi: 10.1038/s41598-025-89089-8
– ident: e_1_2_8_5_1
  doi: 10.1177/14759217241233733
– ident: e_1_2_8_14_1
  doi: 10.3390/math12172708
– ident: e_1_2_8_7_1
  doi: 10.1016/j.measurement.2025.117984
– ident: e_1_2_8_16_1
  doi: 10.1002/cpe.70090
SSID ssj0011031
Score 2.4142606
Snippet ABSTRACT To overcome the limitations of the artificial hummingbird algorithm (AHA), such as slow convergence and its inability to address discrete optimization...
To overcome the limitations of the artificial hummingbird algorithm (AHA), such as slow convergence and its inability to address discrete optimization...
SourceID crossref
wiley
SourceType Index Database
Publisher
SubjectTerms artificial hummingbird algorithm
convergence factor
elite neighborhood strategy
hybrid flow shop scheduling
reinforcement learning
Title An Enhanced Discrete Hummingbird Algorithm With Reinforcement Learning for Efficient Hybrid Flow Shop Scheduling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.70409
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5q68GL9Yn1xSIevMQmm6Sb4Km0DT1IKdVib2F3s2kCbVLaqvjvnd2kVQ-C4CWEZUPCZB7fzDLfIHTLY-Y7HnGMlnAcSFCYbXgtnxqAlSmTJiwyTw-boIOBN5n4wwp62PTCFPwQ24Kbsgztr5WBM75qfpGGioW8p6CC_g6qqaYqyLxq3VEwftweIqgJBgVdKjFMAO4bYiGTNLcP_whH3-Gpji9B_V9fdoD2S1iJ24UeHKKKzI5QfTOyAZcWfIwW7Qz3skQf--NuCj4DQDOGfzqHEMbTZYTbs2m-TNfJHL_AFY-kplYVuoqISzbWKYYl3NPsE2q5_6H6vnAwy9_xU5Iv4H0JhDDV6X6CxkHvudM3yqELhgCnqSbOCYtDlhbFJJa-5UaOquQ4sQXGT7yWiH0uuE2ZJW0rBjAoKKe-G1HacgVzfGqfomqWZ_IMYcEhEkaWTSNhOwAsPNe04yjiLhMWkZw10M1G9uGi4NYICxZlEoIMQy3DBrrTsv59R9gZ9vTN-d-3XqA9ogb5WsQg7iWqrpev8grtird1ulpel4r0CW2Yy6A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK-jF-sT6XMSDl2iz2WQT8FL6oGItoi16C9nNpi1oWmpV_PfObtKqB0HwEsKwIWEyj29nmW8ATkUSBcynzPIkY7hBiRzL9wJuIVbmkaqiMPLNsAne7fqPj8FtAS7nvTAZP8Si4KY9w8Rr7eC6IH3xxRoqJ-qcow0GS1BinsP9IpQad61-Z3GKoEcYZHyp1Koicp8zC1XpxeLhH_noOz41CaZV_t-nrcNaDixJLbOEDSiodBPK86ENJPfhLZjUUtJMh-bgnzRGGDUQNhP8q8-YxMRoGpPa02A8Hc2Gz-QBr-ROGXJVaeqIJOdjHRAUkabhn9Di9ofu_CKtp_E7uR-OJ_i-ISYx3eu-Df1Ws1dvW_nYBUti2NQz56QtcJ8WJzRRge3GTNdyWGKj-1Pfk0kgpHB4ZCvHThAOSi544Mace66MWMCdHSim41TtApECc2FsOzyWDkNo4btVJ4lj4UbSpkpEFTiZKz-cZOwaYcajTEPUYWh0WIEzo-zfV4T126a52fv70mNYafduOmHnqnu9D6tUj_W1qUXdAyjOpq_qEJbl22z0Mj3KreoTqkTPkA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60injxLb5dxIOXaLPZdLPgpdgGRSnFB3oL2UdsQdNQq-K_d3aTVj0IgpcQhg0Jk3l8O8t8A3Aos1SwiDKvoRjDDUoaeFFDcA-xMk9NHYVp5IZN8E4nengQ3Sk4HffClPwQk4Kb9QwXr62Dm0JnJ1-soaowxxxtUEzDDAtFyGow07qO764mpwh2hEHJl0q9OiL3MbNQnZ5MHv6Rj77jU5dg4sX_fdoSLFTAkjRLS1iGKZOvwOJ4aAOpfHgVimZO2nnPHfyTVh-jBsJmgn_1GZOY7A81aT49Dob9Ue-Z3OOVXBtHrqpcHZFUfKyPBEWk7fgnrPj8w3Z-kfhp8E5ueoMC39fDJGZ73dfgLm7fnp171dgFT2HYtDPnlC9xn6Yzmhnhh5rZWg7LfHR_GjVUJqSSAU99E_gZwkHFJReh5rwRqpQJHqxDLR_kZgOIkpgLtR9wrQKG0CIK60GmtQxT5VMj0004GCs_KUp2jaTkUaYJ6jBxOtyEI6fs31ckZ922u9n6-9J9mOu24uTqonO5DfPUTvX1qUfDHaiNhq9mF2bV26j_MtyrjOoTe-LPCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Enhanced+Discrete+Hummingbird+Algorithm+With+Reinforcement+Learning+for+Efficient+Hybrid+Flow+Shop+Scheduling&rft.jtitle=Concurrency+and+computation&rft.au=Zhou%2C+Ning&rft.au=Zhou%2C+Zhiwei&rft.au=Yao%2C+Jing&rft.date=2025-12-25&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=37&rft.issue=27-28&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.70409&rft.externalDBID=10.1002%252Fcpe.70409&rft.externalDocID=CPE70409
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon