Sigma Partitioning: Complexity and Random Graphs

A $\textit{sigma partitioning}$ of a graph $G$ is a partition of the vertices into sets $P_1, \ldots, P_k$ such that for every two adjacent vertices $u$ and $v$ there is an index $i$ such that $u$ and $v$ have different numbers of neighbors in $P_i$. The $\textit{ sigma number}$ of a graph $G$, deno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics and theoretical computer science Jg. 20 no. 2; H. Graph Theory
Hauptverfasser: Dehghan, Ali, Sadeghi, Mohammad-Reza, Ahadi, Arash
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Discrete Mathematics & Theoretical Computer Science 17.12.2018
Schlagworte:
ISSN:1365-8050, 1365-8050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A $\textit{sigma partitioning}$ of a graph $G$ is a partition of the vertices into sets $P_1, \ldots, P_k$ such that for every two adjacent vertices $u$ and $v$ there is an index $i$ such that $u$ and $v$ have different numbers of neighbors in $P_i$. The $\textit{ sigma number}$ of a graph $G$, denoted by $\sigma(G)$, is the minimum number $k$ such that $ G $ has a sigma partitioning $P_1, \ldots, P_k$. Also, a $\textit{ lucky labeling}$ of a graph $G$ is a function $ \ell :V(G) \rightarrow \mathbb{N}$, such that for every two adjacent vertices $ v $ and $ u$ of $ G $, $ \sum_{w \sim v}\ell(w)\neq \sum_{w \sim u}\ell(w) $ ($ x \sim y $ means that $ x $ and $y$ are adjacent). The $\textit{ lucky number}$ of $ G $, denoted by $\eta(G)$, is the minimum number $k $ such that $ G $ has a lucky labeling $ \ell :V(G) \rightarrow \mathbb{N}_k$. It was conjectured in [Inform. Process. Lett., 112(4):109--112, 2012] that it is $ \mathbf{NP} $-complete to decide whether $ \eta(G)=2$ for a given 3-regular graph $G$. In this work, we prove this conjecture. Among other results, we give an upper bound of five for the sigma number of a uniformly random graph.
AbstractList A $\textit{sigma partitioning}$ of a graph $G$ is a partition of the vertices into sets $P_1, \ldots, P_k$ such that for every two adjacent vertices $u$ and $v$ there is an index $i$ such that $u$ and $v$ have different numbers of neighbors in $P_i$. The $\textit{ sigma number}$ of a graph $G$, denoted by $\sigma(G)$, is the minimum number $k$ such that $ G $ has a sigma partitioning $P_1, \ldots, P_k$. Also, a $\textit{ lucky labeling}$ of a graph $G$ is a function $ \ell :V(G) \rightarrow \mathbb{N}$, such that for every two adjacent vertices $ v $ and $ u$ of $ G $, $ \sum_{w \sim v}\ell(w)\neq \sum_{w \sim u}\ell(w) $ ($ x \sim y $ means that $ x $ and $y$ are adjacent). The $\textit{ lucky number}$ of $ G $, denoted by $\eta(G)$, is the minimum number $k $ such that $ G $ has a lucky labeling $ \ell :V(G) \rightarrow \mathbb{N}_k$. It was conjectured in [Inform. Process. Lett., 112(4):109--112, 2012] that it is $ \mathbf{NP} $-complete to decide whether $ \eta(G)=2$ for a given 3-regular graph $G$. In this work, we prove this conjecture. Among other results, we give an upper bound of five for the sigma number of a uniformly random graph.
Author Dehghan, Ali
Sadeghi, Mohammad-Reza
Ahadi, Arash
Author_xml – sequence: 1
  givenname: Ali
  surname: Dehghan
  fullname: Dehghan, Ali
– sequence: 2
  givenname: Mohammad-Reza
  surname: Sadeghi
  fullname: Sadeghi, Mohammad-Reza
– sequence: 3
  givenname: Arash
  surname: Ahadi
  fullname: Ahadi, Arash
BookMark eNpNkM1OwzAQhC1UJNrClXNewGX9l8TcUIBSqQhEy9mynXVx1cRV0gN9e0JBiMvOzhw-jWZCRm1qkZBrBjMuclHe3D-vqxXlQDll-oyMmcgVLUHB6N9_QSZ9vwVgXMtiTGAVN43NXm13iIeY2thubrMqNfsdfsbDMbNtnb0NJzXZvLP7j_6SnAe76_HqV6fk_fFhXT3R5ct8Ud0tqWdSaepQKC-FAAeWI4JVoZDKQimDL5kevFeFEEXpcwyhlrnG3CP3zAEqp1FMyeKHWye7NfsuNrY7mmSjOQWp25jvzn6HBjiWrgYvEJUUKFzQTFnJrVS1564YWLMflu9S33cY_ngMzGk7c9rO8MEapsUXbiljIw
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.23638/DMTCS-20-2-19
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
ExternalDocumentID oai_doaj_org_article_02e8bd0c3ee543e3bf915a42a45dc2b7
10_23638_DMTCS_20_2_19
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BAIFH
BBTPI
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
ID FETCH-LOGICAL-c1459-be35c4330b0a2ee0a5f745a084fc8190a5c573378c6effd469e6ce2c1b0e5b9e3
IEDL.DBID DOA
ISSN 1365-8050
IngestDate Mon Nov 10 04:33:12 EST 2025
Sat Nov 29 08:06:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Graph Theory
Language English
License https://arxiv.org/licenses/nonexclusive-distrib/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1459-be35c4330b0a2ee0a5f745a084fc8190a5c573378c6effd469e6ce2c1b0e5b9e3
OpenAccessLink https://doaj.org/article/02e8bd0c3ee543e3bf915a42a45dc2b7
ParticipantIDs doaj_primary_oai_doaj_org_article_02e8bd0c3ee543e3bf915a42a45dc2b7
crossref_primary_10_23638_DMTCS_20_2_19
PublicationCentury 2000
PublicationDate 2018-12-17
PublicationDateYYYYMMDD 2018-12-17
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-17
  day: 17
PublicationDecade 2010
PublicationTitle Discrete mathematics and theoretical computer science
PublicationYear 2018
Publisher Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
Score 2.0935106
Snippet A $\textit{sigma partitioning}$ of a graph $G$ is a partition of the vertices into sets $P_1, \ldots, P_k$ such that for every two adjacent vertices $u$ and...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms computer science - computational complexity
mathematics - combinatorics
Title Sigma Partitioning: Complexity and Random Graphs
URI https://doaj.org/article/02e8bd0c3ee543e3bf915a42a45dc2b7
Volume 20 no. 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMctVBhg4FFAlEflAYkpqp-NzQaFAkOriBapTJHtXFCHtqgtSHx77CSturGwRErkONb_HN2d4_wOoetMaTCK8giUZZH31-3IuLDaZLXl2lCZW1MUm4j7fTUa6WSj1FfYE1bigUvhWoT5XjLiOIAUHLjNNZVGMCNk5pgt_iP3Uc8qmaq-HzAt4hLR6J_OVeuhN-wM_IyIWBSYOhsuaIPUX7iU7iHar2JBfFeO4QhtwbSODlZ1FnD12tXRXm_NVl0cIzIYf0wMTsLQq9XUWxxuCmjL5Q820wy_-sNsgp8CjXpxgt66j8POc1TVPYgcFV4nC1w6wTmxxDAAYmQeC2mIErkLDtxIFyiGsXJtyPPMJ7gQ6no5aglIq4Gfotp0NoUzhImz0hHrm4pMMGosB5mTjOfUxcDa0EA3KynSzxJvkfq0oBAtLURLmT9NqW6g-6DUulXAUhcXvLHSyljpX8Y6_49OLtCuj1pU2FNC40tUW86_4ArtuO_leDFvFvOgibaTl17y_gs1q7p4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sigma+Partitioning%3A+Complexity+and+Random+Graphs&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Ali+Dehghan&rft.au=Mohammad-Reza+Sadeghi&rft.au=Arash+Ahadi&rft.date=2018-12-17&rft.pub=Discrete+Mathematics+%26+Theoretical+Computer+Science&rft.eissn=1365-8050&rft.volume=20+no.+2&rft.issue=Graph+Theory&rft_id=info:doi/10.23638%2FDMTCS-20-2-19&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_02e8bd0c3ee543e3bf915a42a45dc2b7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon