Planar 3-SAT with a Clause/Variable Cycle

In the Planar 3-SAT problem, we are given a 3-SAT formula together with its incidence graph, which is planar, and are asked whether this formula is satisfiable. Since Lichtenstein's proof that this problem is NP-complete, it has been used as a starting point for a large number of reductions. In...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics and theoretical computer science Ročník 21 no. 3; číslo Discrete Algorithms
Hlavní autor: Pilz, Alexander
Médium: Journal Article
Jazyk:angličtina
Vydáno: Discrete Mathematics & Theoretical Computer Science 05.06.2019
Témata:
ISSN:1365-8050, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the Planar 3-SAT problem, we are given a 3-SAT formula together with its incidence graph, which is planar, and are asked whether this formula is satisfiable. Since Lichtenstein's proof that this problem is NP-complete, it has been used as a starting point for a large number of reductions. In the course of this research, different restrictions on the incidence graph of the formula have been devised, for which the problem also remains hard. In this paper, we investigate the restriction in which we require that the incidence graph can be augmented by the edges of a Hamiltonian cycle that first passes through all variables and then through all clauses, in a way that the resulting graph is still planar. We show that the problem of deciding satisfiability of a 3-SAT formula remains NP-complete even if the incidence graph is restricted in that way and the Hamiltonian cycle is given. This complements previous results demanding cycles only through either the variables or clauses. The problem remains hard for monotone formulas, as well as for instances with exactly three distinct variables per clause. In the course of this investigation, we show that monotone instances of Planar 3-SAT with exactly three distinct variables per clause are always satisfiable, thus settling the question by Darmann, D\"ocker, and Dorn on the complexity of this problem variant in a surprising way. Comment: Implementing style of DMTCS journal
ISSN:1365-8050
1365-8050
DOI:10.23638/DMTCS-21-3-18