Forecasting Multi-Level Deep Learning Autoencoder Architecture (MDLAA) for Parametric Prediction based on Convolutional Neural Networks
This study presents a data-driven framework for anomaly detection, which is a significant process in modern computing, as the detection of an abnormal signal can prevent a high-risk decision. The proposed Multi-Level Deep Learning Autoencoder Architecture (MDLAA) is used to encode high dimensional i...
Uložené v:
| Vydané v: | Engineering, technology & applied science research Ročník 15; číslo 2; s. 21279 - 21283 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
03.04.2025
|
| ISSN: | 2241-4487, 1792-8036 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This study presents a data-driven framework for anomaly detection, which is a significant process in modern computing, as the detection of an abnormal signal can prevent a high-risk decision. The proposed Multi-Level Deep Learning Autoencoder Architecture (MDLAA) is used to encode high dimensional input data using CNNs for anomaly detection in High Dimensional Input Datasets (HDDs). MDLAA is based on unsupervised learning, which has a strong theoretical foundation and is widely used for the detection of anomalies in HDDs, but a few limitations significantly reduce its performance. The proposed MDLAA combines multilevel convolutional layers and data preprocessing. The performance of the proposed model was evaluated on a benchmark dataset. Using feature engineering, the proposed algorithm assists in the detection of anomalies that are present in data structures, especially when compared to the ResNet101 feature extractor. The results show that given adequate data, the proposed technique outperformed other previously implemented deep learning approaches and classification models, showing an overall improvement of 2.3% in terms of MSE, F1-score, precision, and accuracy. |
|---|---|
| AbstractList | This study presents a data-driven framework for anomaly detection, which is a significant process in modern computing, as the detection of an abnormal signal can prevent a high-risk decision. The proposed Multi-Level Deep Learning Autoencoder Architecture (MDLAA) is used to encode high dimensional input data using CNNs for anomaly detection in High Dimensional Input Datasets (HDDs). MDLAA is based on unsupervised learning, which has a strong theoretical foundation and is widely used for the detection of anomalies in HDDs, but a few limitations significantly reduce its performance. The proposed MDLAA combines multilevel convolutional layers and data preprocessing. The performance of the proposed model was evaluated on a benchmark dataset. Using feature engineering, the proposed algorithm assists in the detection of anomalies that are present in data structures, especially when compared to the ResNet101 feature extractor. The results show that given adequate data, the proposed technique outperformed other previously implemented deep learning approaches and classification models, showing an overall improvement of 2.3% in terms of MSE, F1-score, precision, and accuracy. |
| Author | Ali, Aitizaz Abdulnabi, Mohamed Shabbir Hamza Din, Irfanud Sarwar, Nadeem Alqahtani, Abdullah M. Khan, Hamayun Ayub, Nasir Ali, Arshad |
| Author_xml | – sequence: 1 givenname: Nasir surname: Ayub fullname: Ayub, Nasir – sequence: 2 givenname: Nadeem surname: Sarwar fullname: Sarwar, Nadeem – sequence: 3 givenname: Arshad surname: Ali fullname: Ali, Arshad – sequence: 4 givenname: Hamayun surname: Khan fullname: Khan, Hamayun – sequence: 5 givenname: Irfanud surname: Din fullname: Din, Irfanud – sequence: 6 givenname: Abdullah M. surname: Alqahtani fullname: Alqahtani, Abdullah M. – sequence: 7 givenname: Mohamed Shabbir Hamza surname: Abdulnabi fullname: Abdulnabi, Mohamed Shabbir Hamza – sequence: 8 givenname: Aitizaz surname: Ali fullname: Ali, Aitizaz |
| BookMark | eNotkLFOwzAYhC1UJErpxAt4BKEUO3FiZ4xaCkgpdIA5cpzfEEjj6rdTxBPw2rSFW-50J93wnZNR73og5JKzmVBMiVsI2uMs52l6QsZc5nGkWJKNyDiOBY-EUPKMTL3_YHtlKhMyHpOfpUMw2oe2f6OroQttVMIOOroA2NISNPaHpRiCg964BpAWaN7bACYMCPRqtSiL4ppah3StUW8gYGvoGqFpTWhdT2vtoaH7MHf9znXDodQdfYIBjxa-HH76C3Jqdedh-u8T8rq8e5k_ROXz_eO8KCPDRZpGOs1za5VWicmZ0bKxqoaMmTQWqVBKNYxzzqTUTDU2FoZJpSVXcc0sa2JVJxNy8_dr0HmPYKstthuN3xVn1RFjdcRYHTAmv-YlaaU |
| Cites_doi | 10.48084/etasr.7384 10.1109/ACCESS.2019.2942485 10.1007/s13735-022-00227-8 10.1016/j.ijcard.2020.11.053 10.1186/s40537-019-0179-2 10.1016/j.asoc.2022.109486 10.3390/electronics9111963 10.1007/978-3-030-11723-8_16 10.1007/s42979-024-02831-3 10.1109/JAS.2017.7510313 10.1049/2024/8821891 10.1109/JSEN.2020.3035846 10.1145/2689746.2689747 10.48084/etasr.3801 10.1145/3097983.3098052 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.48084/etasr.9155 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1792-8036 |
| EndPage | 21283 |
| ExternalDocumentID | 10_48084_etasr_9155 |
| GroupedDBID | .4S 5VS AAYXX ADBBV AEGXH ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV CITATION EBS EDO EJD ITG ITH KWQ OK1 RNS TUS |
| ID | FETCH-LOGICAL-c1455-a599ff8a83c90ca7df8be60c52454888d0111077a08df24c078a7182b0f0d28b3 |
| ISSN | 2241-4487 |
| IngestDate | Sun Nov 09 14:48:33 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1455-a599ff8a83c90ca7df8be60c52454888d0111077a08df24c078a7182b0f0d28b3 |
| OpenAccessLink | https://doi.org/10.48084/etasr.9155 |
| PageCount | 5 |
| ParticipantIDs | crossref_primary_10_48084_etasr_9155 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-03 |
| PublicationDateYYYYMMDD | 2025-04-03 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering, technology & applied science research |
| PublicationYear | 2025 |
| References | 306508 306519 306509 306515 306516 306517 306518 306511 306522 306512 306523 306513 306524 306514 306525 306520 306510 306521 |
| References_xml | – ident: 306516 doi: 10.48084/etasr.7384 – ident: 306524 doi: 10.1109/ACCESS.2019.2942485 – ident: 306525 – ident: 306513 doi: 10.1007/s13735-022-00227-8 – ident: 306510 doi: 10.1016/j.ijcard.2020.11.053 – ident: 306515 doi: 10.1186/s40537-019-0179-2 – ident: 306523 doi: 10.1016/j.asoc.2022.109486 – ident: 306514 doi: 10.3390/electronics9111963 – ident: 306518 – ident: 306511 doi: 10.1007/978-3-030-11723-8_16 – ident: 306521 doi: 10.1007/s42979-024-02831-3 – ident: 306509 doi: 10.1109/JAS.2017.7510313 – ident: 306517 doi: 10.1049/2024/8821891 – ident: 306520 doi: 10.1109/JSEN.2020.3035846 – ident: 306512 doi: 10.1145/2689746.2689747 – ident: 306519 doi: 10.48084/etasr.3801 – ident: 306522 – ident: 306508 doi: 10.1145/3097983.3098052 |
| SSID | ssj0000686472 ssib044735913 ssib050383323 |
| Score | 2.3079915 |
| Snippet | This study presents a data-driven framework for anomaly detection, which is a significant process in modern computing, as the detection of an abnormal signal... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 21279 |
| Title | Forecasting Multi-Level Deep Learning Autoencoder Architecture (MDLAA) for Parametric Prediction based on Convolutional Neural Networks |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1792-8036 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044735913 issn: 2241-4487 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FwgEOiKd4aw89gJBhs7br9dEqRT20USWK1Fs0fiyNVJzIdkJ74cr_5Jcws-u1NxWHcuDiOFZs2Z4vM9_Ozn7D2K7SFdk2DzB0l0G0J4ogr_D_uFdp5B9pWkgdmWYTyWymzs7Sk8nkt1sLs7lI6lpdXqar_2pqPIbGpqWz_2Du4aJ4APfR6LhFs-P2RoanZpsFtKac2SyvDY6oMAg9S7Vycqrf3mfrbkkaliQlkfmTCcg4jz8dZRmlC6gE8QSofIt0_Klco1zY1uIU_EqaaNhf1pv-cdDYJPVhPkxtebuV9h-FD8ms3ZDSN-CDngy7VUa9BtGQq86u1nbiCNrFUE78BZoftj58BmXV56DBtNk2Lq9pz6EcIsq5TfUewne4Wtd-tkPGpkgmHJ0iMY4Ah5Q2SFfWaScpenVhhVQGrx576JVbLlra9jV9vMfvtpXO9WASKaEiglAHbfOBdPTHmOnqBK6F0qHAEYdW5vS5OXlOJ99it2USpxQ8jn8eOJ8XUetnb6aY1HnCsKdslk0oUvinHonu0e0yU3P9j-PNecTKY0inD9j9fmjDMwvJh2xS1Y_YPc_uj9kvD5zcAycncHIHTu6Bk_vg5G8NNN9xBCYfgclHYHIDTI47W8DkFpjcAfMJ-_r54HT_MOhbgQQFKekHgG5DawUqLFJRQFJqhS5FFLGMcMitVIlhaiqSBIQqtYwKJL6ArEvmQotSqjx8ynbqZV09Y1zS6wWdaogh0kqAhCmx7jCnYATT52zXvcf5yiq-zP9izhc3-9lLdneE8Su20zXr6jW7U2y6Rdu8MVD4A745oqg |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Multi-Level+Deep+Learning+Autoencoder+Architecture+%28MDLAA%29+for+Parametric+Prediction+based+on+Convolutional+Neural+Networks&rft.jtitle=Engineering%2C+technology+%26+applied+science+research&rft.au=Ayub%2C+Nasir&rft.au=Sarwar%2C+Nadeem&rft.au=Ali%2C+Arshad&rft.au=Khan%2C+Hamayun&rft.date=2025-04-03&rft.issn=2241-4487&rft.eissn=1792-8036&rft.volume=15&rft.issue=2&rft.spage=21279&rft.epage=21283&rft_id=info:doi/10.48084%2Fetasr.9155&rft.externalDBID=n%2Fa&rft.externalDocID=10_48084_etasr_9155 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2241-4487&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2241-4487&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2241-4487&client=summon |