On-line algorithms for multiplication and division in real and complex numeration systems

A positional numeration system is given by a base and by a set of digits. The base is a real or complex number $\beta$ such that $|\beta|>1$, and the digit set $A$ is a finite set of digits including $0$. Thus a number can be seen as a finite or infinite string of digits. An on-line algorithm pro...

Full description

Saved in:
Bibliographic Details
Published in:Discrete mathematics and theoretical computer science Vol. 21 no. 3; no. Discrete Algorithms
Main Authors: Frougny, Christiane, Pavelka, Marta, Pelantova, Edita, Svobodova, Milena
Format: Journal Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 20.06.2019
Subjects:
ISSN:1365-8050, 1365-8050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A positional numeration system is given by a base and by a set of digits. The base is a real or complex number $\beta$ such that $|\beta|>1$, and the digit set $A$ is a finite set of digits including $0$. Thus a number can be seen as a finite or infinite string of digits. An on-line algorithm processes the input piece-by-piece in a serial fashion. On-line arithmetic, introduced by Trivedi and Ercegovac, is a mode of computation where operands and results flow through arithmetic units in a digit serial manner, starting with the most significant digit. In this paper, we first formulate a generalized version of the on-line algorithms for multiplication and division of Trivedi and Ercegovac for the cases that $\beta$ is any real or complex number, and digits are real or complex. We then define the so-called OL Property, and show that if $(\beta, A)$ has the OL Property, then on-line multiplication and division are feasible by the Trivedi-Ercegovac algorithms. For a real base $\beta$ and a digit set $A$ of contiguous integers, the system $(\beta, A)$ has the OL Property if $\# A > |\beta|$. For a complex base $\beta$ and symmetric digit set $A$ of contiguous integers, the system $(\beta, A)$ has the OL Property if $\# A > \beta\overline{\beta} + |\beta + \overline{\beta}|$. Provided that addition and subtraction are realizable in parallel in the system $(\beta, A)$ and that preprocessing of the denominator is possible, our on-line algorithms for multiplication and division have linear time complexity. Three examples are presented in detail: base $\beta=\frac{3+\sqrt{5}}{2}$ with digits $A=\{-1,0,1\}$; base $\beta=2i$ with digits $A = \{-2,-1, 0,1,2\}$; and base $\beta = -\frac{3}{2} + i \frac{\sqrt{3}}{2} = -1 + \omega$, where $\omega = \exp{\frac{2i\pi}{3}}$, with digits $A = \{0, \pm 1, \pm \omega, \pm \omega^2 \}$. Comment: Extended version of contribution on 23rd IEEE Symposium on Computer Arithmetic ARITH23
AbstractList A positional numeration system is given by a base and by a set of digits. The base is a real or complex number $\beta$ such that $|\beta|>1$, and the digit set $A$ is a finite set of digits including $0$. Thus a number can be seen as a finite or infinite string of digits. An on-line algorithm processes the input piece-by-piece in a serial fashion. On-line arithmetic, introduced by Trivedi and Ercegovac, is a mode of computation where operands and results flow through arithmetic units in a digit serial manner, starting with the most significant digit. In this paper, we first formulate a generalized version of the on-line algorithms for multiplication and division of Trivedi and Ercegovac for the cases that $\beta$ is any real or complex number, and digits are real or complex. We then define the so-called OL Property, and show that if $(\beta, A)$ has the OL Property, then on-line multiplication and division are feasible by the Trivedi-Ercegovac algorithms. For a real base $\beta$ and a digit set $A$ of contiguous integers, the system $(\beta, A)$ has the OL Property if $\# A > |\beta|$. For a complex base $\beta$ and symmetric digit set $A$ of contiguous integers, the system $(\beta, A)$ has the OL Property if $\# A > \beta\overline{\beta} + |\beta + \overline{\beta}|$. Provided that addition and subtraction are realizable in parallel in the system $(\beta, A)$ and that preprocessing of the denominator is possible, our on-line algorithms for multiplication and division have linear time complexity. Three examples are presented in detail: base $\beta=\frac{3+\sqrt{5}}{2}$ with digits $A=\{-1,0,1\}$; base $\beta=2i$ with digits $A = \{-2,-1, 0,1,2\}$; and base $\beta = -\frac{3}{2} + i \frac{\sqrt{3}}{2} = -1 + \omega$, where $\omega = \exp{\frac{2i\pi}{3}}$, with digits $A = \{0, \pm 1, \pm \omega, \pm \omega^2 \}$.
A positional numeration system is given by a base and by a set of digits. The base is a real or complex number $\beta$ such that $|\beta|>1$, and the digit set $A$ is a finite set of digits including $0$. Thus a number can be seen as a finite or infinite string of digits. An on-line algorithm processes the input piece-by-piece in a serial fashion. On-line arithmetic, introduced by Trivedi and Ercegovac, is a mode of computation where operands and results flow through arithmetic units in a digit serial manner, starting with the most significant digit. In this paper, we first formulate a generalized version of the on-line algorithms for multiplication and division of Trivedi and Ercegovac for the cases that $\beta$ is any real or complex number, and digits are real or complex. We then define the so-called OL Property, and show that if $(\beta, A)$ has the OL Property, then on-line multiplication and division are feasible by the Trivedi-Ercegovac algorithms. For a real base $\beta$ and a digit set $A$ of contiguous integers, the system $(\beta, A)$ has the OL Property if $\# A > |\beta|$. For a complex base $\beta$ and symmetric digit set $A$ of contiguous integers, the system $(\beta, A)$ has the OL Property if $\# A > \beta\overline{\beta} + |\beta + \overline{\beta}|$. Provided that addition and subtraction are realizable in parallel in the system $(\beta, A)$ and that preprocessing of the denominator is possible, our on-line algorithms for multiplication and division have linear time complexity. Three examples are presented in detail: base $\beta=\frac{3+\sqrt{5}}{2}$ with digits $A=\{-1,0,1\}$; base $\beta=2i$ with digits $A = \{-2,-1, 0,1,2\}$; and base $\beta = -\frac{3}{2} + i \frac{\sqrt{3}}{2} = -1 + \omega$, where $\omega = \exp{\frac{2i\pi}{3}}$, with digits $A = \{0, \pm 1, \pm \omega, \pm \omega^2 \}$. Comment: Extended version of contribution on 23rd IEEE Symposium on Computer Arithmetic ARITH23
Author Svobodova, Milena
Pelantova, Edita
Frougny, Christiane
Pavelka, Marta
Author_xml – sequence: 1
  givenname: Christiane
  surname: Frougny
  fullname: Frougny, Christiane
– sequence: 2
  givenname: Marta
  surname: Pavelka
  fullname: Pavelka, Marta
– sequence: 3
  givenname: Edita
  surname: Pelantova
  fullname: Pelantova, Edita
– sequence: 4
  givenname: Milena
  surname: Svobodova
  fullname: Svobodova, Milena
BookMark eNpN0MtOwzAQBVALFYm2sGWdH0gZP5K4S1RelUBdUBasLD-LKyeu7BTRv6ekCLGamavRWdwJGnWxswhdY5gRWlN-c_eyXryWBJe0xOwMjTGtq5JDBaN_-wWa5LwFwGTOmjF6X3Vl8J0tZNjE5PuPNhcupqLdh97vgtey97ErZGcK4z99_jl8VyQrwxDq2O6C_Sq6fWvT6Tcfcm_bfInOnQzZXv3OKXp7uF8vnsrn1eNycftcaswqVjonjSNguOJKMeWUsqTBaq6pblQDRmPNJMiaVdRW2lIiwVnCNHBLnOSYTtHy5Joot2KXfCvTQUTpxRDEtBEy9V4HKwAMUH7EiKtYA3PJKwVcATaW2LpxR2t2snSKOSfr_jwMYihZDCULggUVmNFv0zZzlw
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.23638/DMTCS-21-3-14
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
ExternalDocumentID oai_doaj_org_article_00d0380a62f54709a85b08b01de2e67f
10_23638_DMTCS_21_3_14
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BAIFH
BBTPI
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
ID FETCH-LOGICAL-c1454-ffadf20d8b8bb4bfbbe271b9c3c7b70dc1c4a0a6453e5ce32a0fe24c08e2fa813
IEDL.DBID DOA
ISSN 1365-8050
IngestDate Fri Oct 03 12:52:14 EDT 2025
Sat Nov 29 08:07:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Discrete Algorithms
Language English
License https://arxiv.org/licenses/nonexclusive-distrib/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1454-ffadf20d8b8bb4bfbbe271b9c3c7b70dc1c4a0a6453e5ce32a0fe24c08e2fa813
OpenAccessLink https://doaj.org/article/00d0380a62f54709a85b08b01de2e67f
ParticipantIDs doaj_primary_oai_doaj_org_article_00d0380a62f54709a85b08b01de2e67f
crossref_primary_10_23638_DMTCS_21_3_14
PublicationCentury 2000
PublicationDate 2019-06-20
PublicationDateYYYYMMDD 2019-06-20
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-20
  day: 20
PublicationDecade 2010
PublicationTitle Discrete mathematics and theoretical computer science
PublicationYear 2019
Publisher Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
Score 2.1130857
Snippet A positional numeration system is given by a base and by a set of digits. The base is a real or complex number $\beta$ such that $|\beta|>1$, and the digit set...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms computer science - data structures and algorithms
Title On-line algorithms for multiplication and division in real and complex numeration systems
URI https://doaj.org/article/00d0380a62f54709a85b08b01de2e67f
Volume 21 no. 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwMhECametCDj6qxPhoOJp5IeRb2qFWjh9Ym1qQ9bYAFbVK3pq3Gny_sbpt68uKVEEK-GeAbGL4B4JIR7jjxHtngPYhnziPltEGWW6mEtkK0fVFsQvZ6ajhM-mulvmJOWCkPXALXwjjDTGHdpl5wiROthMHKYJI56trSx90Xy2QZTFXvBzThspRopCx4WOu2O-g8I0oQQ4T_OoLWlPqLI-V-H-xWXBBel3M4ABsur4O9ZZ0FWC27OtjprrRV54dg9JSjyA2hnrxOQ2j_9j6HgXnCKjWwuoODOs9g_GsVb8PgOIeBHE6KxiKJ3H3DPP68LPuWcs7zI_ByfzfoPKCqQAKyhAuOvNeZpzhTRhnDjTfGUUlMYpmVRuLMEst1gI4L5oR1jGrsHeUWK0e9VoQdg1o-zd0JgIkLFjKGBsdivO1N4rVQjhHtjZSaJg1wtcQs_Sh1MNIQPxTopgW6KSUpC5FEA9xESFe9on510RCsmlZWTf-y6ul_DHIGtgO9iSILYS84B7XF7NNdgC37tRjPZ83CYZpgs__Y7Y9-AJ8hynA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-line+algorithms+for+multiplication+and+division+in+real+and+complex+numeration+systems&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Christiane+Frougny&rft.au=Marta+Pavelka&rft.au=Edita+Pelantova&rft.au=Milena+Svobodova&rft.date=2019-06-20&rft.pub=Discrete+Mathematics+%26+Theoretical+Computer+Science&rft.eissn=1365-8050&rft.volume=21+no.+3&rft.issue=Discrete+Algorithms&rft_id=info:doi/10.23638%2FDMTCS-21-3-14&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_00d0380a62f54709a85b08b01de2e67f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon