On-line algorithms for multiplication and division in real and complex numeration systems
A positional numeration system is given by a base and by a set of digits. The base is a real or complex number $\beta$ such that $|\beta|>1$, and the digit set $A$ is a finite set of digits including $0$. Thus a number can be seen as a finite or infinite string of digits. An on-line algorithm pro...
Uložené v:
| Vydané v: | Discrete mathematics and theoretical computer science Ročník 21 no. 3; číslo Discrete Algorithms |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Discrete Mathematics & Theoretical Computer Science
20.06.2019
|
| Predmet: | |
| ISSN: | 1365-8050, 1365-8050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A positional numeration system is given by a base and by a set of digits. The base is a real or complex number $\beta$ such that $|\beta|>1$, and the digit set $A$ is a finite set of digits including $0$. Thus a number can be seen as a finite or infinite string of digits. An on-line algorithm processes the input piece-by-piece in a serial fashion. On-line arithmetic, introduced by Trivedi and Ercegovac, is a mode of computation where operands and results flow through arithmetic units in a digit serial manner, starting with the most significant digit. In this paper, we first formulate a generalized version of the on-line algorithms for multiplication and division of Trivedi and Ercegovac for the cases that $\beta$ is any real or complex number, and digits are real or complex. We then define the so-called OL Property, and show that if $(\beta, A)$ has the OL Property, then on-line multiplication and division are feasible by the Trivedi-Ercegovac algorithms. For a real base $\beta$ and a digit set $A$ of contiguous integers, the system $(\beta, A)$ has the OL Property if $\# A > |\beta|$. For a complex base $\beta$ and symmetric digit set $A$ of contiguous integers, the system $(\beta, A)$ has the OL Property if $\# A > \beta\overline{\beta} + |\beta + \overline{\beta}|$. Provided that addition and subtraction are realizable in parallel in the system $(\beta, A)$ and that preprocessing of the denominator is possible, our on-line algorithms for multiplication and division have linear time complexity. Three examples are presented in detail: base $\beta=\frac{3+\sqrt{5}}{2}$ with digits $A=\{-1,0,1\}$; base $\beta=2i$ with digits $A = \{-2,-1, 0,1,2\}$; and base $\beta = -\frac{3}{2} + i \frac{\sqrt{3}}{2} = -1 + \omega$, where $\omega = \exp{\frac{2i\pi}{3}}$, with digits $A = \{0, \pm 1, \pm \omega, \pm \omega^2 \}$.
Comment: Extended version of contribution on 23rd IEEE Symposium on Computer Arithmetic ARITH23 |
|---|---|
| AbstractList | A positional numeration system is given by a base and by a set of digits. The base is a real or complex number $\beta$ such that $|\beta|>1$, and the digit set $A$ is a finite set of digits including $0$. Thus a number can be seen as a finite or infinite string of digits. An on-line algorithm processes the input piece-by-piece in a serial fashion. On-line arithmetic, introduced by Trivedi and Ercegovac, is a mode of computation where operands and results flow through arithmetic units in a digit serial manner, starting with the most significant digit. In this paper, we first formulate a generalized version of the on-line algorithms for multiplication and division of Trivedi and Ercegovac for the cases that $\beta$ is any real or complex number, and digits are real or complex. We then define the so-called OL Property, and show that if $(\beta, A)$ has the OL Property, then on-line multiplication and division are feasible by the Trivedi-Ercegovac algorithms. For a real base $\beta$ and a digit set $A$ of contiguous integers, the system $(\beta, A)$ has the OL Property if $\# A > |\beta|$. For a complex base $\beta$ and symmetric digit set $A$ of contiguous integers, the system $(\beta, A)$ has the OL Property if $\# A > \beta\overline{\beta} + |\beta + \overline{\beta}|$. Provided that addition and subtraction are realizable in parallel in the system $(\beta, A)$ and that preprocessing of the denominator is possible, our on-line algorithms for multiplication and division have linear time complexity. Three examples are presented in detail: base $\beta=\frac{3+\sqrt{5}}{2}$ with digits $A=\{-1,0,1\}$; base $\beta=2i$ with digits $A = \{-2,-1, 0,1,2\}$; and base $\beta = -\frac{3}{2} + i \frac{\sqrt{3}}{2} = -1 + \omega$, where $\omega = \exp{\frac{2i\pi}{3}}$, with digits $A = \{0, \pm 1, \pm \omega, \pm \omega^2 \}$. A positional numeration system is given by a base and by a set of digits. The base is a real or complex number $\beta$ such that $|\beta|>1$, and the digit set $A$ is a finite set of digits including $0$. Thus a number can be seen as a finite or infinite string of digits. An on-line algorithm processes the input piece-by-piece in a serial fashion. On-line arithmetic, introduced by Trivedi and Ercegovac, is a mode of computation where operands and results flow through arithmetic units in a digit serial manner, starting with the most significant digit. In this paper, we first formulate a generalized version of the on-line algorithms for multiplication and division of Trivedi and Ercegovac for the cases that $\beta$ is any real or complex number, and digits are real or complex. We then define the so-called OL Property, and show that if $(\beta, A)$ has the OL Property, then on-line multiplication and division are feasible by the Trivedi-Ercegovac algorithms. For a real base $\beta$ and a digit set $A$ of contiguous integers, the system $(\beta, A)$ has the OL Property if $\# A > |\beta|$. For a complex base $\beta$ and symmetric digit set $A$ of contiguous integers, the system $(\beta, A)$ has the OL Property if $\# A > \beta\overline{\beta} + |\beta + \overline{\beta}|$. Provided that addition and subtraction are realizable in parallel in the system $(\beta, A)$ and that preprocessing of the denominator is possible, our on-line algorithms for multiplication and division have linear time complexity. Three examples are presented in detail: base $\beta=\frac{3+\sqrt{5}}{2}$ with digits $A=\{-1,0,1\}$; base $\beta=2i$ with digits $A = \{-2,-1, 0,1,2\}$; and base $\beta = -\frac{3}{2} + i \frac{\sqrt{3}}{2} = -1 + \omega$, where $\omega = \exp{\frac{2i\pi}{3}}$, with digits $A = \{0, \pm 1, \pm \omega, \pm \omega^2 \}$. Comment: Extended version of contribution on 23rd IEEE Symposium on Computer Arithmetic ARITH23 |
| Author | Svobodova, Milena Pelantova, Edita Frougny, Christiane Pavelka, Marta |
| Author_xml | – sequence: 1 givenname: Christiane surname: Frougny fullname: Frougny, Christiane – sequence: 2 givenname: Marta surname: Pavelka fullname: Pavelka, Marta – sequence: 3 givenname: Edita surname: Pelantova fullname: Pelantova, Edita – sequence: 4 givenname: Milena surname: Svobodova fullname: Svobodova, Milena |
| BookMark | eNpN0MtOwzAQBVALFYm2sGWdH0gZP5K4S1RelUBdUBasLD-LKyeu7BTRv6ekCLGamavRWdwJGnWxswhdY5gRWlN-c_eyXryWBJe0xOwMjTGtq5JDBaN_-wWa5LwFwGTOmjF6X3Vl8J0tZNjE5PuPNhcupqLdh97vgtey97ErZGcK4z99_jl8VyQrwxDq2O6C_Sq6fWvT6Tcfcm_bfInOnQzZXv3OKXp7uF8vnsrn1eNycftcaswqVjonjSNguOJKMeWUsqTBaq6pblQDRmPNJMiaVdRW2lIiwVnCNHBLnOSYTtHy5Joot2KXfCvTQUTpxRDEtBEy9V4HKwAMUH7EiKtYA3PJKwVcATaW2LpxR2t2snSKOSfr_jwMYihZDCULggUVmNFv0zZzlw |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.23638/DMTCS-21-3-14 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1365-8050 |
| ExternalDocumentID | oai_doaj_org_article_00d0380a62f54709a85b08b01de2e67f 10_23638_DMTCS_21_3_14 |
| GroupedDBID | -~9 .4S .DC 29G 2WC 5GY 5VS 8FE 8FG AAFWJ AAYXX ABDBF ABJCF ABUWG ACGFO ACIWK ACUHS ADBBV ADQAK AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS B0M BAIFH BBTPI BCNDV BENPR BFMQW BGLVJ BPHCQ CCPQU CITATION EAP EBS ECS EDO EJD EMK EPL EST ESX GROUPED_DOAJ HCIFZ I-F IAO IBB ICD ITC J9A KQ8 KWQ L6V M7S MK~ ML~ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PV9 REM RNS RSU RZL TR2 TUS XSB ~8M |
| ID | FETCH-LOGICAL-c1454-ffadf20d8b8bb4bfbbe271b9c3c7b70dc1c4a0a6453e5ce32a0fe24c08e2fa813 |
| IEDL.DBID | DOA |
| ISSN | 1365-8050 |
| IngestDate | Fri Oct 03 12:52:14 EDT 2025 Sat Nov 29 08:07:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Discrete Algorithms |
| Language | English |
| License | https://arxiv.org/licenses/nonexclusive-distrib/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1454-ffadf20d8b8bb4bfbbe271b9c3c7b70dc1c4a0a6453e5ce32a0fe24c08e2fa813 |
| OpenAccessLink | https://doaj.org/article/00d0380a62f54709a85b08b01de2e67f |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_00d0380a62f54709a85b08b01de2e67f crossref_primary_10_23638_DMTCS_21_3_14 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-20 |
| PublicationDateYYYYMMDD | 2019-06-20 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationTitle | Discrete mathematics and theoretical computer science |
| PublicationYear | 2019 |
| Publisher | Discrete Mathematics & Theoretical Computer Science |
| Publisher_xml | – name: Discrete Mathematics & Theoretical Computer Science |
| SSID | ssj0012947 |
| Score | 2.113251 |
| Snippet | A positional numeration system is given by a base and by a set of digits. The base is a real or complex number $\beta$ such that $|\beta|>1$, and the digit set... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| SubjectTerms | computer science - data structures and algorithms |
| Title | On-line algorithms for multiplication and division in real and complex numeration systems |
| URI | https://doaj.org/article/00d0380a62f54709a85b08b01de2e67f |
| Volume | 21 no. 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BFMQW dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: PIMPY dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPejBR1Wsj5KD4Ck0r30dtSp6aC1YoT0tySbRQt1Kt4o_38nuttSTF68hhOWb7OSbZOYbhC4VeEOjw4Qw6QyRMnFEh9YXMOtQe7EVY2TZbCLq9-PRKBmstfryOWGVPHAFXIdSQ0VMVchdICOaqDjQNNaUGcttGDnvfYH1LIOp-v2AJzKqJBq5gB3Wue0Nu8-EMyIIk7-OoDWl_vJIud9HuzUXxNfVNxygDZs30d6yzwKuf7sm2umttFWLQzR-yonnhlhNX2cQ2r-9FxiYJ65TA-s7OKxyg32tlb8Nw5McAzmcloNlErn9xrmvvKzmVnLOxRF6ub8bdh9I3SCBZEwGkjinjOPUxDrWWmqnteUR00kmskgDzBnLpALoZCBskFnBFXWWy4zGljsVM3GMGvkstycIR0ZwDXBKFUmpEweBmAJuwhKwFTgB1UJXS8zSj0oHI4X4oUQ3LdFNOUsFRBItdOMhXc3y-tXlAFg1ra2a_mXV0_9Y5AxtA73xIgvgC85RYzH_tBdoK_taTIp5u9wwbbQ5eOwNxj-bf8ha |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-line+algorithms+for+multiplication+and+division+in+real+and+complex+numeration+systems&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Christiane+Frougny&rft.au=Marta+Pavelka&rft.au=Edita+Pelantova&rft.au=Milena+Svobodova&rft.date=2019-06-20&rft.pub=Discrete+Mathematics+%26+Theoretical+Computer+Science&rft.eissn=1365-8050&rft.volume=21+no.+3&rft.issue=Discrete+Algorithms&rft_id=info:doi/10.23638%2FDMTCS-21-3-14&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_00d0380a62f54709a85b08b01de2e67f |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon |