A Note on Flips in Diagonal Rectangulations

Rectangulations are partitions of a square into axis-aligned rectangles. A number of results provide bijections between combinatorial equivalence classes of rectangulations and families of pattern-avoiding permutations. Other results deal with local changes involving a single edge of a rectangulatio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics and theoretical computer science Ročník 20 no. 2; číslo Combinatorics
Hlavní autoři: Cardinal, Jean, Sacristán, Vera, Silveira, Rodrigo I.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Discrete Mathematics & Theoretical Computer Science 09.11.2018
Témata:
ISSN:1365-8050, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Rectangulations are partitions of a square into axis-aligned rectangles. A number of results provide bijections between combinatorial equivalence classes of rectangulations and families of pattern-avoiding permutations. Other results deal with local changes involving a single edge of a rectangulation, referred to as flips, edge rotations, or edge pivoting. Such operations induce a graph on equivalence classes of rectangulations, related to so-called flip graphs on triangulations and other families of geometric partitions. In this note, we consider a family of flip operations on the equivalence classes of diagonal rectangulations, and their interpretation as transpositions in the associated Baxter permutations, avoiding the vincular patterns { 3{14}2, 2{41}3 }. This complements results from Law and Reading (JCTA, 2012) and provides a complete characterization of flip operations on diagonal rectangulations, in both geometric and combinatorial terms.
ISSN:1365-8050
1365-8050
DOI:10.23638/DMTCS-20-2-14