R-spaces and closedness/completeness of certain function spaces in the topology of uniform convergence

It is shown that the notion of an − cl R space (Demonstratio Math. 46(1) (2013), 229-244) fits well as a separation axiom between zero dimensionality and − 0 R spaces. Basic properties of − cl R spaces are studied and their place in the hierarchy of separation axioms that already exist in the litera...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied general topology Ročník 15; číslo 2; s. 155 - 166
Hlavní autoři: Singh, Davinder, Kohli, J. K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Universitat Politècnica de València 04.08.2014
Témata:
ISSN:1576-9402, 1989-4147
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It is shown that the notion of an − cl R space (Demonstratio Math. 46(1) (2013), 229-244) fits well as a separation axiom between zero dimensionality and − 0 R spaces. Basic properties of − cl R spaces are studied and their place in the hierarchy of separation axioms that already exist in the literature is elaborated. The category of − cl R spaces and continuous maps constitutes a full isomorphism closed, monoreflective (epireflective) subcategory of TOP. The function space cl R (X, Y) of all − cl R supercontinuous functions from a space X into a uniform space Y is shown to be closed in the topology of uniform convergence. This strengthens and extends certain results in the literature (Demonstratio Math. 45(4) (2012), 947-952).
ISSN:1576-9402
1989-4147
DOI:10.4995/agt.2014.3029