Using a dynamic arithmetic optimization approach to improve ridgelet neural network performance in remote sensing scene classification

This research proposes an innovative methodology for acurate remore sensing scene classification. Here, a new design of dynamic arithmetic optimization algorithm (DAOA) has been proposed to enhance the performance of a Ridgelet neural network (RNN) in this purpose. The RNN is commonly used in image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports
Hauptverfasser: Zhang, Hui, Chen, Jun, Xie, Hui, Bagi, Kambiz
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 21.11.2025
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This research proposes an innovative methodology for acurate remore sensing scene classification. Here, a new design of dynamic arithmetic optimization algorithm (DAOA) has been proposed to enhance the performance of a Ridgelet neural network (RNN) in this purpose. The RNN is commonly used in image processing and computer vision, but its effectiveness can be hindered by subpar hyperparameter selection. To tackle this problem, the utilization of DAOA has been proposed as a robust optimization technique to automatically search for optimal hyperparameters in the RNN model. The proposed method has been assessed on UC Merced Land Use publicly available dataset frequently employed in remote sensing scene classification. The experimental results show that the proposed approach significantly enhances the efficiency of the RNN when compared to other cutting-edge methods. The findings indicate that the combination of optimization algorithms like DAOA with deep learning models such as RNNs has the potential to yield more precise and efficient solutions for remote sensing scene classification tasks.
AbstractList This research proposes an innovative methodology for acurate remore sensing scene classification. Here, a new design of dynamic arithmetic optimization algorithm (DAOA) has been proposed to enhance the performance of a Ridgelet neural network (RNN) in this purpose. The RNN is commonly used in image processing and computer vision, but its effectiveness can be hindered by subpar hyperparameter selection. To tackle this problem, the utilization of DAOA has been proposed as a robust optimization technique to automatically search for optimal hyperparameters in the RNN model. The proposed method has been assessed on UC Merced Land Use publicly available dataset frequently employed in remote sensing scene classification. The experimental results show that the proposed approach significantly enhances the efficiency of the RNN when compared to other cutting-edge methods. The findings indicate that the combination of optimization algorithms like DAOA with deep learning models such as RNNs has the potential to yield more precise and efficient solutions for remote sensing scene classification tasks.This research proposes an innovative methodology for acurate remore sensing scene classification. Here, a new design of dynamic arithmetic optimization algorithm (DAOA) has been proposed to enhance the performance of a Ridgelet neural network (RNN) in this purpose. The RNN is commonly used in image processing and computer vision, but its effectiveness can be hindered by subpar hyperparameter selection. To tackle this problem, the utilization of DAOA has been proposed as a robust optimization technique to automatically search for optimal hyperparameters in the RNN model. The proposed method has been assessed on UC Merced Land Use publicly available dataset frequently employed in remote sensing scene classification. The experimental results show that the proposed approach significantly enhances the efficiency of the RNN when compared to other cutting-edge methods. The findings indicate that the combination of optimization algorithms like DAOA with deep learning models such as RNNs has the potential to yield more precise and efficient solutions for remote sensing scene classification tasks.
This research proposes an innovative methodology for acurate remore sensing scene classification. Here, a new design of dynamic arithmetic optimization algorithm (DAOA) has been proposed to enhance the performance of a Ridgelet neural network (RNN) in this purpose. The RNN is commonly used in image processing and computer vision, but its effectiveness can be hindered by subpar hyperparameter selection. To tackle this problem, the utilization of DAOA has been proposed as a robust optimization technique to automatically search for optimal hyperparameters in the RNN model. The proposed method has been assessed on UC Merced Land Use publicly available dataset frequently employed in remote sensing scene classification. The experimental results show that the proposed approach significantly enhances the efficiency of the RNN when compared to other cutting-edge methods. The findings indicate that the combination of optimization algorithms like DAOA with deep learning models such as RNNs has the potential to yield more precise and efficient solutions for remote sensing scene classification tasks.
Author Chen, Jun
Zhang, Hui
Bagi, Kambiz
Xie, Hui
Author_xml – sequence: 1
  givenname: Hui
  surname: Zhang
  fullname: Zhang, Hui
– sequence: 2
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
– sequence: 3
  givenname: Hui
  surname: Xie
  fullname: Xie, Hui
– sequence: 4
  givenname: Kambiz
  surname: Bagi
  fullname: Bagi, Kambiz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41271988$$D View this record in MEDLINE/PubMed
BookMark eNpNkc1OxSAQhYnR-P8CLgxLN1WgtIWlMf4lJm50TSidKlqgAlejD-Bzi_eqkc0cyJeZ4ZwdtO6DB4QOKDmmpBYnidNGioqwpmKCS1LJNbTNCC_XmrH1f3oL7af0RMppmORUbqItTllHpRDb6PM-Wf-ANR7evXbWYB1tfnSQiwxzts5-6GyDx3qeY9DmEeeArSv6FXC0wwNMkLGHRdRTKfktxGc8QxxDdNobwNbjCC5kwAn8clYy4AGbSadkR2uW7ffQxqinBPs_dRfdX5zfnV1VN7eX12enN5WhvJaVaMcaWmEkoaKnA29aDuXBdFpIDUx0dGxFIzqiKVDBuxY4oX0PbU9pwYd6Fx2t-pYPvCwgZeVs2WeatIewSKpmHS_GcSEKeviDLnoHg5qjdTq-q1_vCsBWgIkhpQjjH0KJ-s5IrTJSJSO1zEjJ-gsz0IYL
Cites_doi 10.3390/s20071999
10.1145/1869790.1869829
10.1109/ISCBI.2015.8
10.1016/j.bspc.2025.108582
10.1038/s41598-025-87240-z
10.1016/j.knosys.2018.06.001
10.1109/JSTARS.2020.3005403
10.1049/PBCE120F_ch2
10.3390/s20143906
10.1049/iet-rpg.2019.0485
10.1016/j.cma.2020.113609
10.1098/rsta.1999.0444
10.1016/j.inffus.2023.102192
10.3390/rs12203292
10.1109/JSTARS.2020.3011333
10.1109/LGRS.2025.3576662
10.1109/JSTARS.2020.3018307
10.1109/JSTARS.2022.3141826
10.1109/TEVC.2008.919004
10.3390/rs14061478
10.3390/rs14092042
10.3233/JIFS-190495
ContentType Journal Article
Copyright 2025. The Author(s).
Copyright_xml – notice: 2025. The Author(s).
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1038/s41598-025-28490-9
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID 41271988
10_1038_s41598_025_28490_9
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
AAYXX
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
NPM
7X8
ID FETCH-LOGICAL-c1439-86f3e68c9018b1d4564e3e6c7a89ae2871f685870a1e18476e401bbe6b111d4d3
ISSN 2045-2322
IngestDate Sat Nov 22 19:12:32 EST 2025
Sun Nov 23 01:40:44 EST 2025
Thu Nov 27 00:45:56 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Computer vision
Image processing
Ridgelet neural network
Dynamic arithmetic optimization algorithm
Optimization techniques
Hyperparameter optimization
Remote sensing scene classification
Language English
License 2025. The Author(s).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1439-86f3e68c9018b1d4564e3e6c7a89ae2871f685870a1e18476e401bbe6b111d4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-28490-9_reference.pdf
PMID 41271988
PQID 3274204488
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3274204488
pubmed_primary_41271988
crossref_primary_10_1038_s41598_025_28490_9
PublicationCentury 2000
PublicationDate 2025-11-21
2025-Nov-21
20251121
PublicationDateYYYYMMDD 2025-11-21
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Scientific reports
PublicationTitleAlternate Sci Rep
PublicationYear 2025
References S Akodad (28490_CR14) 2020; 12
W Chen (28490_CR8) 2022; 15
L Abualigah (28490_CR27) 2021; 376
28490_CR9
D Simon (28490_CR29) 2008; 12
EJ Candès (28490_CR26) 1999; 357
B Tu (28490_CR11) 2024; 104
D Yu (28490_CR4) 2019; 13
W Zehao (28490_CR21) 2025; 74
G Zhou (28490_CR7) 2022; 60
X Tang (28490_CR10) 2022; 60
F Peng (28490_CR23) 2022; 14
28490_CR31
28490_CR6
C Gong (28490_CR18) 2026; 112
G Dhiman (28490_CR30) 2018; 159
28490_CR12
G Cheng (28490_CR3) 2020; 13
G Zhou (28490_CR5) 2024; 62
28490_CR32
28490_CR15
Z Cui (28490_CR28) 2019; 62
W Wang (28490_CR22) 2022; 60
E Li (28490_CR13) 2020; 19
B Petrovska (28490_CR17) 2020; 20
J Liang (28490_CR2) 2020; 13
28490_CR24
D Yu (28490_CR16) 2020; 20
G Zhou (28490_CR1) 2023; 61
C Shi (28490_CR19) 2020; 13
G Chen (28490_CR20) 2025; 15
28490_CR25
References_xml – volume: 20
  start-page: 1999
  issue: 7
  year: 2020
  ident: 28490_CR16
  publication-title: Sensors
  doi: 10.3390/s20071999
– volume: 60
  start-page: 1
  year: 2022
  ident: 28490_CR22
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: 28490_CR24
  doi: 10.1145/1869790.1869829
– ident: 28490_CR32
  doi: 10.1109/ISCBI.2015.8
– volume: 112
  start-page: 108582
  year: 2026
  ident: 28490_CR18
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2025.108582
– ident: 28490_CR25
– volume: 15
  start-page: 3634
  issue: 1
  year: 2025
  ident: 28490_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-87240-z
– volume: 159
  start-page: 20
  year: 2018
  ident: 28490_CR30
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.06.001
– volume: 13
  start-page: 3735
  year: 2020
  ident: 28490_CR3
  publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.
  doi: 10.1109/JSTARS.2020.3005403
– ident: 28490_CR15
  doi: 10.1049/PBCE120F_ch2
– volume: 20
  start-page: 3906
  issue: 14
  year: 2020
  ident: 28490_CR17
  publication-title: Sensors
  doi: 10.3390/s20143906
– volume: 13
  start-page: 2587
  issue: 14
  year: 2019
  ident: 28490_CR4
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2019.0485
– volume: 19
  start-page: 1
  year: 2020
  ident: 28490_CR13
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 62
  start-page: 1
  year: 2024
  ident: 28490_CR5
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 376
  start-page: 113609
  year: 2021
  ident: 28490_CR27
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113609
– ident: 28490_CR12
– volume: 357
  start-page: 2495
  issue: 1760
  year: 1999
  ident: 28490_CR26
  publication-title: Philosophical Trans. Royal Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.1999.0444
– volume: 104
  start-page: 102192
  year: 2024
  ident: 28490_CR11
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2023.102192
– volume: 12
  start-page: 3292
  issue: 20
  year: 2020
  ident: 28490_CR14
  publication-title: Remote Sens.
  doi: 10.3390/rs12203292
– volume: 60
  start-page: 1
  year: 2022
  ident: 28490_CR10
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 13
  start-page: 4325
  year: 2020
  ident: 28490_CR2
  publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.
  doi: 10.1109/JSTARS.2020.3011333
– ident: 28490_CR6
  doi: 10.1109/LGRS.2025.3576662
– volume: 13
  start-page: 5194
  year: 2020
  ident: 28490_CR19
  publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.
  doi: 10.1109/JSTARS.2020.3018307
– volume: 15
  start-page: 1150
  year: 2022
  ident: 28490_CR8
  publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.
  doi: 10.1109/JSTARS.2022.3141826
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 28490_CR29
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– volume: 14
  start-page: 1478
  issue: 6
  year: 2022
  ident: 28490_CR23
  publication-title: Remote Sens.
  doi: 10.3390/rs14061478
– volume: 60
  start-page: 1
  year: 2022
  ident: 28490_CR7
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 74
  start-page: 104186
  year: 2025
  ident: 28490_CR21
  publication-title: Sustain. Energy Technol. Assess.
– ident: 28490_CR9
  doi: 10.3390/rs14092042
– ident: 28490_CR31
  doi: 10.3233/JIFS-190495
– volume: 61
  start-page: 1
  year: 2023
  ident: 28490_CR1
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 62
  start-page: 1
  issue: 7
  year: 2019
  ident: 28490_CR28
  publication-title: Sci. China Inf. Sci.
SSID ssj0000529419
Score 2.4644222
SecondaryResourceType online_first
Snippet This research proposes an innovative methodology for acurate remore sensing scene classification. Here, a new design of dynamic arithmetic optimization...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Title Using a dynamic arithmetic optimization approach to improve ridgelet neural network performance in remote sensing scene classification
URI https://www.ncbi.nlm.nih.gov/pubmed/41271988
https://www.proquest.com/docview/3274204488
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LixNBEC6yiYIX8W18hBa8DYPz7u6jKysruCHICvE09PR0dMBMlk2yrF4Ff7dV3fPIGhbcg5ciNENlmPqorncBvEZPR6WLMvaTSKc-JeJ8qeLAF6VOeZDJVBg7Z_Yjn07FfC5ng8Gvthfm4juva3F5Kc_-q6jxDIVNrbM3EHfHFA_wNwodKYod6T8J3hUBKK90u-Y9dIY335bUq-itUD8sm8bLbpo4WZ-VDS0Yz3ZvoSQ9GnOJwqtdkTgNN-7aC2wDDArYeGsqfqdwhEaF6Wmyw6nwqJd1Y_Ra_WFrktoUxV64-nhb9YUGbb9Ih9u5S6LsPHSovroyBLUsqp-7oYsopR4-1w_tNByNwvfRpHPq2Oyf7el3N819jVYHdQYiR7xdZeDL_jZrM_h_XXJd6aFNuscidzxy5JFbHrk8gFHE8WwIo9mHk9mXLlRHydDErojpXq5pv0JGb_Zf5qqJc43fYu2X03twt3E82FsHmPswMPUDuO1Wkf54CL8tbJhiDWxYDxu2CxvWwoZtVqyBDWthwxxsWAMbtgMbVtXMwYY1sGEWNuwqbB7B5_dHp--O_WZHh6_R0pa-yBaxyYRGs1IUYUnDiQweaK6EVIbc8QVtOOCBCk2IllBm0KEvCpMVeMmWSRk_hmG9qs1TYCltdgi4TqJIJ0LyAhkK9AhMlEmRhHwMXvtZ8zM3iiW_XppjeNV--Rw1JqXBVG1W23UeU3VCkODNNYYnTiQdvySMeCiFeHaj_3oOd3p4v4Dh5nxrXsItfbGp1ucTOOBzbqmYwOjwaDr7NLGhH6Qn0YwoR-pA9wcV1pzP
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+a+dynamic+arithmetic+optimization+approach+to+improve+ridgelet+neural+network+performance+in+remote+sensing+scene+classification&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Hui&rft.au=Chen%2C+Jun&rft.au=Xie%2C+Hui&rft.au=Bagi%2C+Kambiz&rft.date=2025-11-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038%2Fs41598-025-28490-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_28490_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon