Using a dynamic arithmetic optimization approach to improve ridgelet neural network performance in remote sensing scene classification
This research proposes an innovative methodology for acurate remore sensing scene classification. Here, a new design of dynamic arithmetic optimization algorithm (DAOA) has been proposed to enhance the performance of a Ridgelet neural network (RNN) in this purpose. The RNN is commonly used in image...
Uloženo v:
| Vydáno v: | Scientific reports |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
21.11.2025
|
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This research proposes an innovative methodology for acurate remore sensing scene classification. Here, a new design of dynamic arithmetic optimization algorithm (DAOA) has been proposed to enhance the performance of a Ridgelet neural network (RNN) in this purpose. The RNN is commonly used in image processing and computer vision, but its effectiveness can be hindered by subpar hyperparameter selection. To tackle this problem, the utilization of DAOA has been proposed as a robust optimization technique to automatically search for optimal hyperparameters in the RNN model. The proposed method has been assessed on UC Merced Land Use publicly available dataset frequently employed in remote sensing scene classification. The experimental results show that the proposed approach significantly enhances the efficiency of the RNN when compared to other cutting-edge methods. The findings indicate that the combination of optimization algorithms like DAOA with deep learning models such as RNNs has the potential to yield more precise and efficient solutions for remote sensing scene classification tasks. |
|---|---|
| AbstractList | This research proposes an innovative methodology for acurate remore sensing scene classification. Here, a new design of dynamic arithmetic optimization algorithm (DAOA) has been proposed to enhance the performance of a Ridgelet neural network (RNN) in this purpose. The RNN is commonly used in image processing and computer vision, but its effectiveness can be hindered by subpar hyperparameter selection. To tackle this problem, the utilization of DAOA has been proposed as a robust optimization technique to automatically search for optimal hyperparameters in the RNN model. The proposed method has been assessed on UC Merced Land Use publicly available dataset frequently employed in remote sensing scene classification. The experimental results show that the proposed approach significantly enhances the efficiency of the RNN when compared to other cutting-edge methods. The findings indicate that the combination of optimization algorithms like DAOA with deep learning models such as RNNs has the potential to yield more precise and efficient solutions for remote sensing scene classification tasks.This research proposes an innovative methodology for acurate remore sensing scene classification. Here, a new design of dynamic arithmetic optimization algorithm (DAOA) has been proposed to enhance the performance of a Ridgelet neural network (RNN) in this purpose. The RNN is commonly used in image processing and computer vision, but its effectiveness can be hindered by subpar hyperparameter selection. To tackle this problem, the utilization of DAOA has been proposed as a robust optimization technique to automatically search for optimal hyperparameters in the RNN model. The proposed method has been assessed on UC Merced Land Use publicly available dataset frequently employed in remote sensing scene classification. The experimental results show that the proposed approach significantly enhances the efficiency of the RNN when compared to other cutting-edge methods. The findings indicate that the combination of optimization algorithms like DAOA with deep learning models such as RNNs has the potential to yield more precise and efficient solutions for remote sensing scene classification tasks. This research proposes an innovative methodology for acurate remore sensing scene classification. Here, a new design of dynamic arithmetic optimization algorithm (DAOA) has been proposed to enhance the performance of a Ridgelet neural network (RNN) in this purpose. The RNN is commonly used in image processing and computer vision, but its effectiveness can be hindered by subpar hyperparameter selection. To tackle this problem, the utilization of DAOA has been proposed as a robust optimization technique to automatically search for optimal hyperparameters in the RNN model. The proposed method has been assessed on UC Merced Land Use publicly available dataset frequently employed in remote sensing scene classification. The experimental results show that the proposed approach significantly enhances the efficiency of the RNN when compared to other cutting-edge methods. The findings indicate that the combination of optimization algorithms like DAOA with deep learning models such as RNNs has the potential to yield more precise and efficient solutions for remote sensing scene classification tasks. |
| Author | Chen, Jun Zhang, Hui Bagi, Kambiz Xie, Hui |
| Author_xml | – sequence: 1 givenname: Hui surname: Zhang fullname: Zhang, Hui – sequence: 2 givenname: Jun surname: Chen fullname: Chen, Jun – sequence: 3 givenname: Hui surname: Xie fullname: Xie, Hui – sequence: 4 givenname: Kambiz surname: Bagi fullname: Bagi, Kambiz |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41271988$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkc1OxSAQhYnR-P8CLgxLN1WgtIWlMf4lJm50TSidKlqgAlejD-Bzi_eqkc0cyJeZ4ZwdtO6DB4QOKDmmpBYnidNGioqwpmKCS1LJNbTNCC_XmrH1f3oL7af0RMppmORUbqItTllHpRDb6PM-Wf-ANR7evXbWYB1tfnSQiwxzts5-6GyDx3qeY9DmEeeArSv6FXC0wwNMkLGHRdRTKfktxGc8QxxDdNobwNbjCC5kwAn8clYy4AGbSadkR2uW7ffQxqinBPs_dRfdX5zfnV1VN7eX12enN5WhvJaVaMcaWmEkoaKnA29aDuXBdFpIDUx0dGxFIzqiKVDBuxY4oX0PbU9pwYd6Fx2t-pYPvCwgZeVs2WeatIewSKpmHS_GcSEKeviDLnoHg5qjdTq-q1_vCsBWgIkhpQjjH0KJ-s5IrTJSJSO1zEjJ-gsz0IYL |
| Cites_doi | 10.3390/s20071999 10.1145/1869790.1869829 10.1109/ISCBI.2015.8 10.1016/j.bspc.2025.108582 10.1038/s41598-025-87240-z 10.1016/j.knosys.2018.06.001 10.1109/JSTARS.2020.3005403 10.1049/PBCE120F_ch2 10.3390/s20143906 10.1049/iet-rpg.2019.0485 10.1016/j.cma.2020.113609 10.1098/rsta.1999.0444 10.1016/j.inffus.2023.102192 10.3390/rs12203292 10.1109/JSTARS.2020.3011333 10.1109/LGRS.2025.3576662 10.1109/JSTARS.2020.3018307 10.1109/JSTARS.2022.3141826 10.1109/TEVC.2008.919004 10.3390/rs14061478 10.3390/rs14092042 10.3233/JIFS-190495 |
| ContentType | Journal Article |
| Copyright | 2025. The Author(s). |
| Copyright_xml | – notice: 2025. The Author(s). |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1038/s41598-025-28490-9 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| ExternalDocumentID | 41271988 10_1038_s41598_025_28490_9 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML AAYXX ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU CITATION DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP NPM 7X8 |
| ID | FETCH-LOGICAL-c1439-86f3e68c9018b1d4564e3e6c7a89ae2871f685870a1e18476e401bbe6b111d4d3 |
| ISSN | 2045-2322 |
| IngestDate | Sat Nov 22 19:12:32 EST 2025 Sun Nov 23 01:40:44 EST 2025 Thu Nov 27 00:45:56 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Computer vision Image processing Ridgelet neural network Dynamic arithmetic optimization algorithm Optimization techniques Hyperparameter optimization Remote sensing scene classification |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1439-86f3e68c9018b1d4564e3e6c7a89ae2871f685870a1e18476e401bbe6b111d4d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.nature.com/articles/s41598-025-28490-9_reference.pdf |
| PMID | 41271988 |
| PQID | 3274204488 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3274204488 pubmed_primary_41271988 crossref_primary_10_1038_s41598_025_28490_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-21 2025-Nov-21 20251121 |
| PublicationDateYYYYMMDD | 2025-11-21 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| References | S Akodad (28490_CR14) 2020; 12 W Chen (28490_CR8) 2022; 15 L Abualigah (28490_CR27) 2021; 376 28490_CR9 D Simon (28490_CR29) 2008; 12 EJ Candès (28490_CR26) 1999; 357 B Tu (28490_CR11) 2024; 104 D Yu (28490_CR4) 2019; 13 W Zehao (28490_CR21) 2025; 74 G Zhou (28490_CR7) 2022; 60 X Tang (28490_CR10) 2022; 60 F Peng (28490_CR23) 2022; 14 28490_CR31 28490_CR6 C Gong (28490_CR18) 2026; 112 G Dhiman (28490_CR30) 2018; 159 28490_CR12 G Cheng (28490_CR3) 2020; 13 G Zhou (28490_CR5) 2024; 62 28490_CR32 28490_CR15 Z Cui (28490_CR28) 2019; 62 W Wang (28490_CR22) 2022; 60 E Li (28490_CR13) 2020; 19 B Petrovska (28490_CR17) 2020; 20 J Liang (28490_CR2) 2020; 13 28490_CR24 D Yu (28490_CR16) 2020; 20 G Zhou (28490_CR1) 2023; 61 C Shi (28490_CR19) 2020; 13 G Chen (28490_CR20) 2025; 15 28490_CR25 |
| References_xml | – volume: 20 start-page: 1999 issue: 7 year: 2020 ident: 28490_CR16 publication-title: Sensors doi: 10.3390/s20071999 – volume: 60 start-page: 1 year: 2022 ident: 28490_CR22 publication-title: IEEE Trans. Geosci. Remote Sens. – ident: 28490_CR24 doi: 10.1145/1869790.1869829 – ident: 28490_CR32 doi: 10.1109/ISCBI.2015.8 – volume: 112 start-page: 108582 year: 2026 ident: 28490_CR18 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2025.108582 – ident: 28490_CR25 – volume: 15 start-page: 3634 issue: 1 year: 2025 ident: 28490_CR20 publication-title: Sci. Rep. doi: 10.1038/s41598-025-87240-z – volume: 159 start-page: 20 year: 2018 ident: 28490_CR30 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.06.001 – volume: 13 start-page: 3735 year: 2020 ident: 28490_CR3 publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2020.3005403 – ident: 28490_CR15 doi: 10.1049/PBCE120F_ch2 – volume: 20 start-page: 3906 issue: 14 year: 2020 ident: 28490_CR17 publication-title: Sensors doi: 10.3390/s20143906 – volume: 13 start-page: 2587 issue: 14 year: 2019 ident: 28490_CR4 publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg.2019.0485 – volume: 19 start-page: 1 year: 2020 ident: 28490_CR13 publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 62 start-page: 1 year: 2024 ident: 28490_CR5 publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 376 start-page: 113609 year: 2021 ident: 28490_CR27 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113609 – ident: 28490_CR12 – volume: 357 start-page: 2495 issue: 1760 year: 1999 ident: 28490_CR26 publication-title: Philosophical Trans. Royal Soc. Lond. Ser. A: Math. Phys. Eng. Sci. doi: 10.1098/rsta.1999.0444 – volume: 104 start-page: 102192 year: 2024 ident: 28490_CR11 publication-title: Inform. Fusion doi: 10.1016/j.inffus.2023.102192 – volume: 12 start-page: 3292 issue: 20 year: 2020 ident: 28490_CR14 publication-title: Remote Sens. doi: 10.3390/rs12203292 – volume: 60 start-page: 1 year: 2022 ident: 28490_CR10 publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 13 start-page: 4325 year: 2020 ident: 28490_CR2 publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2020.3011333 – ident: 28490_CR6 doi: 10.1109/LGRS.2025.3576662 – volume: 13 start-page: 5194 year: 2020 ident: 28490_CR19 publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2020.3018307 – volume: 15 start-page: 1150 year: 2022 ident: 28490_CR8 publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2022.3141826 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 28490_CR29 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – volume: 14 start-page: 1478 issue: 6 year: 2022 ident: 28490_CR23 publication-title: Remote Sens. doi: 10.3390/rs14061478 – volume: 60 start-page: 1 year: 2022 ident: 28490_CR7 publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 74 start-page: 104186 year: 2025 ident: 28490_CR21 publication-title: Sustain. Energy Technol. Assess. – ident: 28490_CR9 doi: 10.3390/rs14092042 – ident: 28490_CR31 doi: 10.3233/JIFS-190495 – volume: 61 start-page: 1 year: 2023 ident: 28490_CR1 publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 62 start-page: 1 issue: 7 year: 2019 ident: 28490_CR28 publication-title: Sci. China Inf. Sci. |
| SSID | ssj0000529419 |
| Score | 2.4644222 |
| SecondaryResourceType | online_first |
| Snippet | This research proposes an innovative methodology for acurate remore sensing scene classification. Here, a new design of dynamic arithmetic optimization... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database |
| Title | Using a dynamic arithmetic optimization approach to improve ridgelet neural network performance in remote sensing scene classification |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/41271988 https://www.proquest.com/docview/3274204488 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (Proquest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (Proquest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB4cu4VeQvp22pot9CZE9bJ299iUhBQaI0oK7kmspFUrqOUQ2yHttdDf3ZldPZyaQHPoZTCDGAvNx-zsznyzAG9QHfqll7tFESs3Ur52s9DTbqn5dFr6soyUma7_kc9mYj6XyWDwq-XCXH3ndS2ur-XFf3U16tDZRJ29g7s7o6jA3-h0lOh2lP_keNsEoJzC3jXv4GZ4_W1BXEVnifFh0RAvu2nilH1W5mhBO4a9hZ50aMwlOq-2TeI03LijFxgCDDpYOytqfqfjiBwDppNTHk6NR72vm6TXxA_Tk9SWKHaOq083Vd9o0PJFOtzObRFl66Ej9dW2IahFVv3cProIpsThs3xoG-FoFL6LKZ0Nx3pXtxPf7TT3FWYdxAxEi7i6Ss-V_WrWVvD_WuS61kNTdA9Fam2kaCM1NlK5B6OAo24Io-TDWfKlO6qjYmhkrojpXq6hX6Ght7svczPFuWXfYvKX8wPYbzYe7J0FzEMY6PoR3LdXkf54DL8NbJhiDWxYDxu2DRvWwoatl6yBDWthwyxsWAMbtgUbVtXMwoY1sGEGNuwmbJ7A55Pj8_enbnNHh5tjpi1dEZehjkWOaaXI_IKGE2lU5FwJqTRtx0u64YB7GAV8zIRijRv6LNNxhotsERXhUxjWy1o_ByaFp2RQSC0LESFcpF9iLplpkRe5mHI-Bqf9rOmFHcWS3u7NMbxuv3yKEZPKYKrWy80qDak7wYtw5RrDM-uSzl7kB9yXQhze6b9ewIMe3i9huL7c6FdwL79aV6vLCezxOTdSTGB0dDxLPk3M0Q_KsyAhyVFa0P0BV7mfZA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+a+dynamic+arithmetic+optimization+approach+to+improve+ridgelet+neural+network+performance+in+remote+sensing+scene+classification&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Hui&rft.au=Chen%2C+Jun&rft.au=Xie%2C+Hui&rft.au=Bagi%2C+Kambiz&rft.date=2025-11-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038%2Fs41598-025-28490-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_28490_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |