Intelligent Modeling of Soil Moisture Variability Using Remote Sensing and Spiking Neural Networks

Soil moisture prediction requires the integration of multisource data, including satellite observations, ground-based sensors, and airborne systems, each contributing critical information for modeling Earth’s hydrological cycles. The complexity of this task necessitates an analytical framework capab...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Procedia computer science Ročník 270; s. 1372 - 1380
Hlavní autori: El Maachi, Soukaina, Saadane, Rachid, Chehri, Abdellah
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 2025
Predmet:
ISSN:1877-0509, 1877-0509
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Soil moisture prediction requires the integration of multisource data, including satellite observations, ground-based sensors, and airborne systems, each contributing critical information for modeling Earth’s hydrological cycles. The complexity of this task necessitates an analytical framework capable of reconciling general modeling principles with the intricate variability of climatic factors to ensure reliable predictions. This study explores the application of Spiking Neural Networks (SNNs) as an advanced approach beyond conventional methodologies, utilizing array-sensed data from the ERA5 dataset. SNNs are distinguished by their ability to merge computational efficiency with biologically inspired dynamics, employing Leaky Integrate-and-Fire neurons to process spatial and temporal information effectively. The model’s adaptability and precision in handling large-scale climatic datasets were evaluated using an 80-20 data split, achieving a Mean Squared Error (MSE) of 0.0003, an R2 value of 0.8919, and a Pearson correlation coefficient of 0.9449, reinforcing its predictive capability and ability to capture intrinsic dependencies within soil moisture dynamics. This novel implementation of SNNs enhances prediction accuracy while offering a computationally efficient solution for soil moisture forecasting, addressing key challenges in environmental and agricultural applications. The findings provide a foundation for future research aimed at optimizing hydrological models through biologically inspired neural architectures.
AbstractList Soil moisture prediction requires the integration of multisource data, including satellite observations, ground-based sensors, and airborne systems, each contributing critical information for modeling Earth’s hydrological cycles. The complexity of this task necessitates an analytical framework capable of reconciling general modeling principles with the intricate variability of climatic factors to ensure reliable predictions. This study explores the application of Spiking Neural Networks (SNNs) as an advanced approach beyond conventional methodologies, utilizing array-sensed data from the ERA5 dataset. SNNs are distinguished by their ability to merge computational efficiency with biologically inspired dynamics, employing Leaky Integrate-and-Fire neurons to process spatial and temporal information effectively. The model’s adaptability and precision in handling large-scale climatic datasets were evaluated using an 80-20 data split, achieving a Mean Squared Error (MSE) of 0.0003, an R2 value of 0.8919, and a Pearson correlation coefficient of 0.9449, reinforcing its predictive capability and ability to capture intrinsic dependencies within soil moisture dynamics. This novel implementation of SNNs enhances prediction accuracy while offering a computationally efficient solution for soil moisture forecasting, addressing key challenges in environmental and agricultural applications. The findings provide a foundation for future research aimed at optimizing hydrological models through biologically inspired neural architectures.
Author Saadane, Rachid
Chehri, Abdellah
El Maachi, Soukaina
Author_xml – sequence: 1
  givenname: Soukaina
  surname: El Maachi
  fullname: El Maachi, Soukaina
  email: soukaina.elmaachi.cedoc@ehtp.ac.ma
  organization: Hassania School of Public Works, Casablanca, Morocco
– sequence: 2
  givenname: Rachid
  surname: Saadane
  fullname: Saadane, Rachid
  email: saadane@ehtp.ac.ma
  organization: Hassania School of Public Works, Casablanca, Morocco
– sequence: 3
  givenname: Abdellah
  surname: Chehri
  fullname: Chehri, Abdellah
  email: chehri@rmc.ca
  organization: Royal Military College of Canada, Kingston, Ontario, K7K 7B4, Canada
BookMark eNp9kMFOwzAMhiM0JMbYE3DpC7Q46dqkBw5oAjZpgMQY1yhN3Slbl0xJB9rb024cOOHL_9vyb1nfNRlYZ5GQWwoJBZrfbZK9dzokDFiWQJGwTFyQIRWcx5BBMfjjr8g4hA10lQpRUD4k5dy22DRmjbaNXlyFjbHryNXR0pmmG5jQHjxGn8obVZrGtMdoFfqVd9y5FqMl2lOrbBUt92bb-1c8eNV00n47vw035LJWTcDxr47I6unxYzqLF2_P8-nDItZ0kopYZxXnpa6A8bwWmJVK1Fk-YemEFkpoWiIwRlEVgJSXRa3KHKDSuVY8QwY6HZH0fFd7F4LHWu692Sl_lBRkT0pu5ImU7ElJKGRHqkvdn1PYvfZl0MugDVqNlfGoW1k582_-B6nRdlk
Cites_doi 10.3390/ijerph20021374
10.1109/VTC2024-Spring62846.2024.10683049
10.1175/JHM-D-21-0206.1
10.3390/rs14215584
10.3390/jrfm18030114
10.1371/journal.pone.0214508
10.5194/hess-28-917-2024
10.1029/2018RG000618
10.1016/j.suscom.2018.09.002
10.1145/3440840.3440854
10.1016/j.neunet.2018.12.002
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2025.09.258
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 1380
ExternalDocumentID 10_1016_j_procs_2025_09_258
S187705092502931X
GroupedDBID --K
0R~
1B1
457
5VS
6I.
71M
9DU
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
AAYWO
ABMAC
ABWVN
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADNMO
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
P2P
ROL
SES
SSZ
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c1438-c5d77bcd0276f8e5ba8f56423419a8c1be0221ea90e17b9fab600dc6ca75e20c3
ISSN 1877-0509
IngestDate Thu Nov 27 00:40:42 EST 2025
Wed Dec 10 14:25:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Climate change
climate data
Artificial Intelligence
Spiking neural networks
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1438-c5d77bcd0276f8e5ba8f56423419a8c1be0221ea90e17b9fab600dc6ca75e20c3
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2025.09.258
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_procs_2025_09_258
elsevier_sciencedirect_doi_10_1016_j_procs_2025_09_258
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Accessed on 01-01-2025
Celik, M., Isik, M., Yuzugullu, O., Fajraoui, N., & Erten, E., 2022. Soil Moisture Prediction from Remote Sensing Images Coupled with Climate, Soil Texture and Topography via Deep Learning. Remote. Sens., 14, pp. 5584.
.
El Maachi, S.; Saadane, R.; Chehri, A. Institutions as a Fundamental Cause for Long-Run Sustainability. J. Risk Financial Manag. 2025, 18, 114.
Babaeian, E., Sadeghi, M., Jones, S., Montzka, C., Vereecken, H., & Tuller, M., 2019. Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. Reviews of Geophysics, 57, pp. 530 - 616.
Cai, Y., Zheng, W., Zhang, X., Zhangzhong, L., & Xue, X., 2019. Research on soil moisture prediction model based on deep learning. PLoS ONE, 14.
Paul, S., & Singh, S., 2020. Soil Moisture Prediction Using Machine Learning Techniques. Proceedings of the 2020 3rd International Conference on Computational Intelligence and Intelligent Systems.
S. E. Maachi, A. Chehri and R. Saadane, ”Efficient Hardware Acceleration of Spiking Neural Networks Using FPGA: Towards Real-Time Edge Neuromorphic Computing,” 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring), Singapore, Singapore, 2024, pp. 1-5, doi
Chatterjee, S., Dey, N., & Sen, S., 2020. Soil moisture quantity prediction using optimized neural supported model for sustainable agricultural applications. Sustain. Comput. Informatics Syst., 28, pp. 100279.
Wang, Y., Shi, L., Hu, Y., Hu, X., Song, W., & Wang, L., 2024. A comprehensive study of deep learning for soil moisture prediction. Hydrology and Earth System Sciences.
Li, L., Dai, Y., Wei, S., Wei, Z., Wei, N., & Li, Q., 2022. Causality-Structured Deep Learning for Soil Moisture Predictions. Journal of Hydrometeorology.
Copernicus Climate Change Service (C3S) (2022): ERA5-Land monthly averaged data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). doi
Tavanaei, A., Ghodrati, M., Kheradpisheh, S., Masquelier, T., & Maida, A., 2018. Deep Learning in Spiking Neural Networks. Neural networks: the official journal of the International Neural Network Society, 111, pp. 47-63.
Fu, R., Xie, L., Liu, T., Zheng, B., Zhang, Y., & Hu, S., 2023. A Soil Moisture Prediction Model, Based on Depth and Water Balance Equation: A Case Study of the Xilingol League Grassland. International Journal of Environmental Research and Public Health, 20.
10.1016/j.procs.2025.09.258_bib6
10.1016/j.procs.2025.09.258_bib7
10.1016/j.procs.2025.09.258_bib4
10.1016/j.procs.2025.09.258_bib10
10.1016/j.procs.2025.09.258_bib5
10.1016/j.procs.2025.09.258_bib2
10.1016/j.procs.2025.09.258_bib3
10.1016/j.procs.2025.09.258_bib1
10.1016/j.procs.2025.09.258_bib12
10.1016/j.procs.2025.09.258_bib11
10.1016/j.procs.2025.09.258_bib8
10.1016/j.procs.2025.09.258_bib9
References_xml – reference: Babaeian, E., Sadeghi, M., Jones, S., Montzka, C., Vereecken, H., & Tuller, M., 2019. Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. Reviews of Geophysics, 57, pp. 530 - 616.
– reference: S. E. Maachi, A. Chehri and R. Saadane, ”Efficient Hardware Acceleration of Spiking Neural Networks Using FPGA: Towards Real-Time Edge Neuromorphic Computing,” 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring), Singapore, Singapore, 2024, pp. 1-5, doi:
– reference: Copernicus Climate Change Service (C3S) (2022): ERA5-Land monthly averaged data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). doi:
– reference: Li, L., Dai, Y., Wei, S., Wei, Z., Wei, N., & Li, Q., 2022. Causality-Structured Deep Learning for Soil Moisture Predictions. Journal of Hydrometeorology.
– reference: Paul, S., & Singh, S., 2020. Soil Moisture Prediction Using Machine Learning Techniques. Proceedings of the 2020 3rd International Conference on Computational Intelligence and Intelligent Systems.
– reference: Tavanaei, A., Ghodrati, M., Kheradpisheh, S., Masquelier, T., & Maida, A., 2018. Deep Learning in Spiking Neural Networks. Neural networks: the official journal of the International Neural Network Society, 111, pp. 47-63.
– reference: Fu, R., Xie, L., Liu, T., Zheng, B., Zhang, Y., & Hu, S., 2023. A Soil Moisture Prediction Model, Based on Depth and Water Balance Equation: A Case Study of the Xilingol League Grassland. International Journal of Environmental Research and Public Health, 20.
– reference: .
– reference: Wang, Y., Shi, L., Hu, Y., Hu, X., Song, W., & Wang, L., 2024. A comprehensive study of deep learning for soil moisture prediction. Hydrology and Earth System Sciences.
– reference: (Accessed on 01-01-2025)
– reference: Chatterjee, S., Dey, N., & Sen, S., 2020. Soil moisture quantity prediction using optimized neural supported model for sustainable agricultural applications. Sustain. Comput. Informatics Syst., 28, pp. 100279.
– reference: Celik, M., Isik, M., Yuzugullu, O., Fajraoui, N., & Erten, E., 2022. Soil Moisture Prediction from Remote Sensing Images Coupled with Climate, Soil Texture and Topography via Deep Learning. Remote. Sens., 14, pp. 5584.
– reference: El Maachi, S.; Saadane, R.; Chehri, A. Institutions as a Fundamental Cause for Long-Run Sustainability. J. Risk Financial Manag. 2025, 18, 114.
– reference: Cai, Y., Zheng, W., Zhang, X., Zhangzhong, L., & Xue, X., 2019. Research on soil moisture prediction model based on deep learning. PLoS ONE, 14.
– ident: 10.1016/j.procs.2025.09.258_bib5
  doi: 10.3390/ijerph20021374
– ident: 10.1016/j.procs.2025.09.258_bib9
  doi: 10.1109/VTC2024-Spring62846.2024.10683049
– ident: 10.1016/j.procs.2025.09.258_bib3
  doi: 10.1175/JHM-D-21-0206.1
– ident: 10.1016/j.procs.2025.09.258_bib7
  doi: 10.3390/rs14215584
– ident: 10.1016/j.procs.2025.09.258_bib11
  doi: 10.3390/jrfm18030114
– ident: 10.1016/j.procs.2025.09.258_bib12
– ident: 10.1016/j.procs.2025.09.258_bib4
  doi: 10.1371/journal.pone.0214508
– ident: 10.1016/j.procs.2025.09.258_bib1
  doi: 10.5194/hess-28-917-2024
– ident: 10.1016/j.procs.2025.09.258_bib2
  doi: 10.1029/2018RG000618
– ident: 10.1016/j.procs.2025.09.258_bib6
  doi: 10.1016/j.suscom.2018.09.002
– ident: 10.1016/j.procs.2025.09.258_bib8
  doi: 10.1145/3440840.3440854
– ident: 10.1016/j.procs.2025.09.258_bib10
  doi: 10.1016/j.neunet.2018.12.002
SSID ssj0000388917
Score 2.3426244
Snippet Soil moisture prediction requires the integration of multisource data, including satellite observations, ground-based sensors, and airborne systems, each...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 1372
SubjectTerms Artificial Intelligence
Climate change
climate data
Spiking neural networks
Title Intelligent Modeling of Soil Moisture Variability Using Remote Sensing and Spiking Neural Networks
URI https://dx.doi.org/10.1016/j.procs.2025.09.258
Volume 270
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxELVSyqGXUr7UQIt86C2stB_ZtfeIEKg9NKqAIm4rr9crAtEGkQTBhd_AT2bGYydLQQgOvUSJtXGSnaeZ8eTNG8Z-9DMIBLWSgTSiDvpa1UEZChVInUJ4kJCAGxo2IQYDeXaW_-l0HnwvzM1INI28vc2v_qupYQ2Mja2z7zD3fFNYgOdgdHgEs8Pjmwz_ay6yObWTzkaO13w8Ho5gAcyK_xmcwhmZJLrvekQbODJgNQPOo5n4xsXjqyFW0nuo4AGmHBBlfNJOaG2jAWDMctNxPETPxdQFKaT3WyFj09ZZx7NL5QZ227qOUpUj2x7hNdWCbWDOqQd-r6yQoHXeLk9QE7PzpVKIAOVlKNS8sOYccEyjQ5wLjRKa5ePCcZTQpKdnrp6qDhcYaDTqrscpCtbGJAT_VFj7n4A3pyF6httFYTcpcJMizAvY5AP7GAs4bCEZ9H5RtUPtnNyOcZ7_Ei9lZUmDz77My-lOK4U5-cI-u7MH3yPMrLKOadbYip_rwZ2bX2dlC0LcQ4iPa44Q4h5CvAUhbiHECULcQYgDhLiDECcIcQ-hDfb38OBk_2fgZnEEGjJqGei0EqLUVRiLrJYmLZWsUzi7ohygkjoqDSSDkVF5aCJR5rUqIZOudKaVSE0c6mSTLTXjxnxlPE2yKMprkVsxwQxP3BKuVOAtEgXZcZft-lsGdrGSK8UrluqyzN_WwiGcssECkPLaG7fe9znb7BO-ovLbN7Y0vZ6Z72xZ30yHk-sdC5NHZgeRBA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Modeling+of+Soil+Moisture+Variability+Using+Remote+Sensing+and+Spiking+Neural+Networks&rft.jtitle=Procedia+computer+science&rft.au=El+Maachi%2C+Soukaina&rft.au=Saadane%2C+Rachid&rft.au=Chehri%2C+Abdellah&rft.date=2025&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=270&rft.spage=1372&rft.epage=1380&rft_id=info:doi/10.1016%2Fj.procs.2025.09.258&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2025_09_258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon