Bird Repeller Using Opencv

This research addresses one of the major problems in agriculture that farmers are currently facing: birds causing significant crop damage in agricultural fields. To reduce this damage, a person’s presence is often required in the farm field to repel the birds. To eliminate this need and automate the...

Full description

Saved in:
Bibliographic Details
Published in:Procedia computer science Vol. 252; pp. 975 - 984
Main Authors: Upendra, M., Anuradha, T., Prakash, L.
Format: Journal Article
Language:English
Published: Elsevier B.V 2025
Subjects:
ISSN:1877-0509, 1877-0509
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This research addresses one of the major problems in agriculture that farmers are currently facing: birds causing significant crop damage in agricultural fields. To reduce this damage, a person’s presence is often required in the farm field to repel the birds. To eliminate this need and automate the repellent system, the project aims to develop a bird repellent device using computer vision techniques to detect and repel birds from fields. Existing work lags behind in using effective algorithms and developing hardware. Object detection algorithms like the Haar Cascade Classifier and YOLOv8 are used; YOLOv8 is a powerful object detection algorithm, and it is chosen as the primary algorithm for its accuracy and speed in detecting birds. A hardware device is developed using a Raspberry Pi with a Pi camera and a Bluetooth speaker. Upon detecting birds in the farm fields through the Pi camera, distress calls are produced through the Bluetooth speakers to repel the birds.
AbstractList This research addresses one of the major problems in agriculture that farmers are currently facing: birds causing significant crop damage in agricultural fields. To reduce this damage, a person’s presence is often required in the farm field to repel the birds. To eliminate this need and automate the repellent system, the project aims to develop a bird repellent device using computer vision techniques to detect and repel birds from fields. Existing work lags behind in using effective algorithms and developing hardware. Object detection algorithms like the Haar Cascade Classifier and YOLOv8 are used; YOLOv8 is a powerful object detection algorithm, and it is chosen as the primary algorithm for its accuracy and speed in detecting birds. A hardware device is developed using a Raspberry Pi with a Pi camera and a Bluetooth speaker. Upon detecting birds in the farm fields through the Pi camera, distress calls are produced through the Bluetooth speakers to repel the birds.
Author Upendra, M.
Anuradha, T.
Prakash, L.
Author_xml – sequence: 1
  givenname: M.
  surname: Upendra
  fullname: Upendra, M.
  email: upendrameesala2527@gmail.com
– sequence: 2
  givenname: T.
  surname: Anuradha
  fullname: Anuradha, T.
  email: anuradha_it@vrsiddhartha.ac.in
– sequence: 3
  givenname: L.
  surname: Prakash
  fullname: Prakash, L.
  email: 21it1030@gmail.com
BookMark eNp9j81KAzEUhYNUsNa-gG76AjPe_E2ShQst_kGhIHYdxuRGMowzQyIF397UunDl2dyz-S7nOyezYRyQkCsKNQXaXHf1lEaXawZM1kBrkPqEzKlWqgIJZvann5Flzh2UcK0NVXNyeReTX73ghH2PabXLcXhfbScc3P6CnIa2z7j8vQuye7h_XT9Vm-3j8_p2UzkquK7euGIoQiOMbDnlPhhwwksBniGAB88RVZCCq8Zz0DIIZihzQaFH0xZmQfjxr0tjzgmDnVL8aNOXpWAPhrazP4b2YGiB2mJYqJsjhWXaPmKy2cUyG31M6D6tH-O__DeHOlp6
Cites_doi 10.1063/5.0164559
10.58532/V3BCAG22CH4
10.3390/drones8060259
10.37394/23203.2023.18.14
10.1109/ICICV50876.2021.9388590
10.2991/978-94-6463-482-2_6
10.1088/1742-6596/1477/3/032012
10.1016/j.procs.2023.12.065
10.1109/ACCESS.2024.3420730
10.1109/JSTARS.2023.3339235
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2025.01.058
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 984
ExternalDocumentID 10_1016_j_procs_2025_01_058
S1877050925000584
GroupedDBID --K
0R~
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ABWVN
ACGFS
ACRPL
ADBBV
ADEZE
ADNMO
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c1438-b372e4f6495a313df90c4d540d2e00d0d3ee7f54376d3085f42912cf7ede9a5a3
ISSN 1877-0509
IngestDate Sat Nov 29 08:12:26 EST 2025
Sat Mar 15 15:43:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords YOLO
pi camera
Raspberry pi
Open CV
Cascade Classifier
Bird Repellent
Computer Vision
image detection
Distress Call
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1438-b372e4f6495a313df90c4d540d2e00d0d3ee7f54376d3085f42912cf7ede9a5a3
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2025.01.058
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_procs_2025_01_058
elsevier_sciencedirect_doi_10_1016_j_procs_2025_01_058
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Krishnan, T., et al. "Bird repeller for agriculture lands and orchards." AIP Conference Proceedings. Vol. 2888. No. 1. AIP Publishing, 2023.
Zamri, Fatin Najihah Muhamad, et al. "Enhanced small drone detection using optimized YOLOv8 with attention mechanisms." IEEE Access (2024).
Mpouziotas, Karvelis (bib3) 2024; 8
Yi, Hao, et al. "Small object detection algorithm based on improved YOLOv8 for remote sensing." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (2023).
.
Roihan, Ahmad, Muhaimin Hasanudin, and Endang Sunandar. "Evaluation methods of bird repellent devices in optimizing crop production in agriculture." Journal of Physics: Conference Series. Vol. 1477. No. 3. IOP Publishing, 2020.
Abubeker (bib5) 2024; 4
Kale, Manoj, et al. "Damage to the agricultural yield due to birds, present repelling techniques and its impacts: an insight from the Indian perspective." (2012): 49-62.
Protic, Mihajlo, et al. "Signals Intelligence Based Drone Detection Using YOLOv8 Models." Proceedings of the 2nd International Conference on Innovation in Information Technology and Business (ICIITB 2024). Vol. 113. Springer Nature, 2024.
Yauri Rodríguez, Ricardo, et al. "Development of an electronic bird repellent system using sound emission." (2023).
Kareem (bib9) 2024; 2
Mashuk, Farhan, Abdus Sattar, and Nahida Sultana. "Machine learning approach for bird detection." 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). IEEE, 2021.
Sankaran, Sowmya. "Multi-Species Object Detection in Drone Imagery for Population Monitoring of Endangered Animals." arXiv preprint arXiv:2407.00127 (2024).
Dave (bib2) 2023; 230
Yodha, Kiran, et al. "Birds damage to horticultural crops." (2024). doi
Kareem (10.1016/j.procs.2025.01.058_bib9) 2024; 2
10.1016/j.procs.2025.01.058_bib14
10.1016/j.procs.2025.01.058_bib13
Abubeker (10.1016/j.procs.2025.01.058_bib5) 2024; 4
10.1016/j.procs.2025.01.058_bib1
Mpouziotas (10.1016/j.procs.2025.01.058_bib3) 2024; 8
10.1016/j.procs.2025.01.058_bib4
10.1016/j.procs.2025.01.058_bib6
10.1016/j.procs.2025.01.058_bib12
10.1016/j.procs.2025.01.058_bib7
10.1016/j.procs.2025.01.058_bib11
Dave (10.1016/j.procs.2025.01.058_bib2) 2023; 230
10.1016/j.procs.2025.01.058_bib8
10.1016/j.procs.2025.01.058_bib10
References_xml – reference: Yauri Rodríguez, Ricardo, et al. "Development of an electronic bird repellent system using sound emission." (2023).
– reference: Sankaran, Sowmya. "Multi-Species Object Detection in Drone Imagery for Population Monitoring of Endangered Animals." arXiv preprint arXiv:2407.00127 (2024).
– volume: 230
  start-page: 100
  year: 2023
  end-page: 111
  ident: bib2
  article-title: "Wild Animal Detection using YOLOv8"
  publication-title: Procedia Computer Science
– reference: Mashuk, Farhan, Abdus Sattar, and Nahida Sultana. "Machine learning approach for bird detection." 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). IEEE, 2021.
– reference: .
– reference: Protic, Mihajlo, et al. "Signals Intelligence Based Drone Detection Using YOLOv8 Models." Proceedings of the 2nd International Conference on Innovation in Information Technology and Business (ICIITB 2024). Vol. 113. Springer Nature, 2024.
– reference: Krishnan, T., et al. "Bird repeller for agriculture lands and orchards." AIP Conference Proceedings. Vol. 2888. No. 1. AIP Publishing, 2023.
– reference: Zamri, Fatin Najihah Muhamad, et al. "Enhanced small drone detection using optimized YOLOv8 with attention mechanisms." IEEE Access (2024).
– volume: 2
  start-page: 19
  year: 2024
  end-page: 27
  ident: bib9
  article-title: "Face mask detection using haar cascades classifier to reduce the risk of Covid-19." International Journal of Mathematics
  publication-title: Statistics, and Computer Science
– volume: 4
  start-page: 265
  year: 2024
  end-page: 271
  ident: bib5
  article-title: "Computer Vision-Assisted Real-Time Bird Eye Chili Classification Using YOLO V5 Framework"
  publication-title: Journal of Artificial Intelligence and Technology
– volume: 8
  start-page: 259
  year: 2024
  ident: bib3
  article-title: Chrysostomos Stylios. "Advanced Computer Vision Methods for Tracking Wild Birds from Drone Footage"
  publication-title: Drones
– reference: Roihan, Ahmad, Muhaimin Hasanudin, and Endang Sunandar. "Evaluation methods of bird repellent devices in optimizing crop production in agriculture." Journal of Physics: Conference Series. Vol. 1477. No. 3. IOP Publishing, 2020.
– reference: Kale, Manoj, et al. "Damage to the agricultural yield due to birds, present repelling techniques and its impacts: an insight from the Indian perspective." (2012): 49-62.
– reference: Yi, Hao, et al. "Small object detection algorithm based on improved YOLOv8 for remote sensing." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (2023).
– reference: Yodha, Kiran, et al. "Birds damage to horticultural crops." (2024). doi:
– ident: 10.1016/j.procs.2025.01.058_bib7
  doi: 10.1063/5.0164559
– ident: 10.1016/j.procs.2025.01.058_bib14
  doi: 10.58532/V3BCAG22CH4
– volume: 8
  start-page: 259
  issue: 6
  year: 2024
  ident: 10.1016/j.procs.2025.01.058_bib3
  article-title: Chrysostomos Stylios. "Advanced Computer Vision Methods for Tracking Wild Birds from Drone Footage"
  publication-title: Drones
  doi: 10.3390/drones8060259
– volume: 4
  start-page: 265
  issue: 3
  year: 2024
  ident: 10.1016/j.procs.2025.01.058_bib5
  article-title: "Computer Vision-Assisted Real-Time Bird Eye Chili Classification Using YOLO V5 Framework"
  publication-title: Journal of Artificial Intelligence and Technology
– ident: 10.1016/j.procs.2025.01.058_bib6
  doi: 10.37394/23203.2023.18.14
– ident: 10.1016/j.procs.2025.01.058_bib4
  doi: 10.1109/ICICV50876.2021.9388590
– volume: 2
  start-page: 19
  year: 2024
  ident: 10.1016/j.procs.2025.01.058_bib9
  article-title: "Face mask detection using haar cascades classifier to reduce the risk of Covid-19." International Journal of Mathematics
  publication-title: Statistics, and Computer Science
– ident: 10.1016/j.procs.2025.01.058_bib11
  doi: 10.2991/978-94-6463-482-2_6
– ident: 10.1016/j.procs.2025.01.058_bib12
  doi: 10.1088/1742-6596/1477/3/032012
– ident: 10.1016/j.procs.2025.01.058_bib10
– volume: 230
  start-page: 100
  year: 2023
  ident: 10.1016/j.procs.2025.01.058_bib2
  article-title: "Wild Animal Detection using YOLOv8"
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2023.12.065
– ident: 10.1016/j.procs.2025.01.058_bib1
  doi: 10.1109/ACCESS.2024.3420730
– ident: 10.1016/j.procs.2025.01.058_bib8
  doi: 10.1109/JSTARS.2023.3339235
– ident: 10.1016/j.procs.2025.01.058_bib13
SSID ssj0000388917
Score 2.342566
Snippet This research addresses one of the major problems in agriculture that farmers are currently facing: birds causing significant crop damage in agricultural...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 975
SubjectTerms Bird Repellent
Cascade Classifier
Computer Vision
Distress Call
image detection
Open CV
pi camera
Raspberry pi
YOLO
Title Bird Repeller Using Opencv
URI https://dx.doi.org/10.1016/j.procs.2025.01.058
Volume 252
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT8IwFG4UPXjxtxH8kR284ci2At2OajQekHCAhNtS1jYBk2nGj3Dyb_e9thsohMjBywJNVrZ9o-_r6-v3EXKnKGe-VIHrw1_Nrfucu5xJDkSOJrjMBxRAi7i2WLsd9vtRx7o4jrWdAEvTcD6PPv8VamgDsHHr7BZwF51CA3wG0OEIsMPxT8A_DjPccoirKqgwqHMBWDaSzJaJqN4gAO-GrilHW4eqjYU5Aj00x9UmRNW32iJZMM24MGtE3aK1k_F3Ptb5mVZtOY1gNhvbMS9kzEUZGBMS1rTZgTIwWrN2qIuM44mNmpExelsZkE1uYIThIEF19MCopBq59p_y17_CUlEsmNehjWLdSYydxJ4fQye7ZC9gMCXCks2vRW4NFW4ibbZc3EcuOKVL-1YuZj0pWSIa3WNyaGcIzoNB9oTsyPSUHOXuG44djM9IBYF2cqAdDbRjgD4nvZfn7tOra50u3ATt590BZYGsqybMVjn1qVCRl9QFkGkRSM8TnqBSMtWoQzQQFEiyAhbhB4liUsiIwzkXpJR-pPKSODD_pjyEnpC4sYGIBA0aijWEBKrXVLJM7vNbheepBU3iDU-4TJr544jte2i4VgwIbzqxst3vXJED_GaSW9ekNMmm8obsJ7PJcJzdani_AUuQUro
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bird+Repeller+Using+Opencv&rft.jtitle=Procedia+computer+science&rft.au=Upendra%2C+M.&rft.au=Anuradha%2C+T.&rft.au=Prakash%2C+L.&rft.date=2025&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=252&rft.spage=975&rft.epage=984&rft_id=info:doi/10.1016%2Fj.procs.2025.01.058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2025_01_058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon