Spline approximate solution for doubly periodic Riemann boundary value problem

A straightforward method for the approximate solution of doubly periodic Riemann boundary value problems for analytic functions is proposed through the approximation by the δ-cardinal splines of the first degree and the cubic δ-cardinal splines. First, we approximate the solution of the doubly perio...

Full description

Saved in:
Bibliographic Details
Published in:Complex variables and elliptic equations Vol. 51; no. 8-11; pp. 1047 - 1058
Main Author: Li, Xing
Format: Journal Article
Language:English
Published: Taylor & Francis Group 01.08.2006
Subjects:
ISSN:1747-6933, 1747-6941
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A straightforward method for the approximate solution of doubly periodic Riemann boundary value problems for analytic functions is proposed through the approximation by the δ-cardinal splines of the first degree and the cubic δ-cardinal splines. First, we approximate the solution of the doubly periodic Riemann jump problem based on approximation of the singular integral operator with Weierstrass ζ-function kernel. Furthermore we obtain the approximate solution of the general non-homogenous doubly periodic Riemann problem. We prove that the approximate solution is sufficiently close to the exact solution in any degree when the partition Δ is sufficiently fine. †Dedicated to Professor Guochun Wen on his 75th anniversary.
AbstractList A straightforward method for the approximate solution of doubly periodic Riemann boundary value problems for analytic functions is proposed through the approximation by the δ-cardinal splines of the first degree and the cubic δ-cardinal splines. First, we approximate the solution of the doubly periodic Riemann jump problem based on approximation of the singular integral operator with Weierstrass ζ-function kernel. Furthermore we obtain the approximate solution of the general non-homogenous doubly periodic Riemann problem. We prove that the approximate solution is sufficiently close to the exact solution in any degree when the partition Δ is sufficiently fine. †Dedicated to Professor Guochun Wen on his 75th anniversary.
Author Li, Xing
Author_xml – sequence: 1
  givenname: Xing
  surname: Li
  fullname: Li, Xing
  email: li_x@nxu.edu.cn
  organization: Department of Mathematics , Ningxia University
BookMark eNqF0M1KAzEQB_AgFWyrD-AtL1BNNp8LXqSoFYqCH-eQZLMQySZLdle7b--WipeCnmYY-A0z_wWYxRQdAJcYXWEk0TUWVPCSII6QoEhKcQLm-9mKlxTPfntCzsCi6z4QooxyNAdPr23w0UHdtjntfKN7B7sUht6nCOuUYZUGE0bYuuxT5S188a7RMUKThljpPMJPHQYHJ22Ca87Baa1D5y5-6hK839-9rTer7fPD4_p2u7KYkukQV5TWasuN48hoISzlNaGlrFhVCklYYa2wrjaM1VJoIgpjpTCyYBgzpzFZAnzYa3Pquuxq1ebp-DwqjNQ-EHUUyGRuDsbH6bFGf6UcKtXrMaRcZx2t7xT5i4t_-ZFS_a4n31Uhe9s
Cites_doi 10.1016/0377-0427(93)90292-J
10.1016/S0266-3538(00)00015-4
10.1016/0021-9045(82)90040-5
10.1016/B978-0-08-010067-8.50007-4
10.1137/0709028
10.1007/978-3-642-52244-4
10.1023/A:1011095706216
10.1016/S0377-0427(00)00348-4
10.1016/0021-9045(90)90010-N
10.1016/0377-0427(88)90005-2
10.1002/1521-4001(200106)81:6<377::AID-ZAMM377>3.0.CO;2-Q
10.1016/S0377-0427(00)00530-6
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2006
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2006
DBID AAYXX
CITATION
DOI 10.1080/17476930600740887
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1747-6941
EndPage 1058
ExternalDocumentID 10_1080_17476930600740887
174051
GroupedDBID .7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AMVHM
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
J.P
KYCEM
M4Z
NA5
NY~
O9-
PQQKQ
QCRFL
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~S~
AAYXX
ACTCW
AGCQS
CITATION
HF~
IPNFZ
LJTGL
NUSFT
RIG
ID FETCH-LOGICAL-c1437-6e29ccac6be60ba77c46f3498d5d978352cc7cefb55f87a372bc87b825115ea13
IEDL.DBID TFW
ISSN 1747-6933
IngestDate Sat Nov 29 06:13:58 EST 2025
Mon May 13 12:10:06 EDT 2019
Mon Oct 20 23:36:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8-11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1437-6e29ccac6be60ba77c46f3498d5d978352cc7cefb55f87a372bc87b825115ea13
PageCount 12
ParticipantIDs informaworld_taylorfrancis_310_1080_17476930600740887
crossref_primary_10_1080_17476930600740887
PublicationCentury 2000
PublicationDate 8/1/2006
2006-08-00
PublicationDateYYYYMMDD 2006-08-01
PublicationDate_xml – month: 08
  year: 2006
  text: 8/1/2006
  day: 01
PublicationDecade 2000
PublicationTitle Complex variables and elliptic equations
PublicationYear 2006
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References Li X (CIT0009) 2001; 109
Ikebe Y (CIT0006) 1976
Wang XL (CIT0017) 1992; 12
Li X (CIT0007) 1995
Lu CK (CIT0012) 1993
CIT0001
Muskhelishvili NI (CIT0013) 1953
Atkinson K (CIT0002) 1985
Li X (CIT0010) 2001
Li X (CIT0008) 2001; 81
Chandrasekharan K (CIT0004) 1985
Gakhov FD (CIT0005) 1966
Stenger F (CIT0015) 2000; 60
Wegmann R (CIT0020) 1988; 23
Begehr H (CIT0003) 2001; 134
Pössdorf S (CIT0014) 1991
Wegert E (CIT0018) 1990; 61
CIT0016
Lu CK (CIT0011) 1982; 36
CIT0019
References_xml – ident: CIT0019
  doi: 10.1016/0377-0427(93)90292-J
– volume: 60
  start-page: 2197
  year: 2000
  ident: CIT0015
  publication-title: Composite Science and Technology
  doi: 10.1016/S0266-3538(00)00015-4
– volume: 36
  start-page: 197
  year: 1982
  ident: CIT0011
  publication-title: Journal of Approximation Theory
  doi: 10.1016/0021-9045(82)90040-5
– volume-title: Boundary Value Problems
  year: 1966
  ident: CIT0005
  doi: 10.1016/B978-0-08-010067-8.50007-4
– year: 1995
  ident: CIT0007
  publication-title: Journal of Mathematical Research and exposition
– volume-title: Boundary Value Problems for Analytic Functions
  year: 1993
  ident: CIT0012
– ident: CIT0001
  doi: 10.1137/0709028
– volume-title: Applications of Doubly Quasi-Periodic Boundary Value Problems in Elasticity Theory
  year: 2001
  ident: CIT0010
– volume-title: Elliptic Functions
  year: 1985
  ident: CIT0004
  doi: 10.1007/978-3-642-52244-4
– volume: 109
  start-page: 403
  year: 2001
  ident: CIT0009
  publication-title: International Journal of Fracture
  doi: 10.1023/A:1011095706216
– volume-title: Singular Integral Equations
  year: 1953
  ident: CIT0013
– volume: 12
  start-page: 113
  year: 1992
  ident: CIT0017
  publication-title: Journal of Mathematics (PRC),
– ident: CIT0016
  doi: 10.1016/S0377-0427(00)00348-4
– volume-title: Elementary Numerical Analysis
  year: 1985
  ident: CIT0002
– volume: 61
  start-page: 322
  year: 1990
  ident: CIT0018
  publication-title: Journal of Approximation Theory
  doi: 10.1016/0021-9045(90)90010-N
– volume: 23
  start-page: 323
  year: 1988
  ident: CIT0020
  publication-title: Journal of Computer Application and Mathematics
  doi: 10.1016/0377-0427(88)90005-2
– start-page: 338
  volume-title: The Theory of Approximation with Applications
  year: 1976
  ident: CIT0006
– volume: 81
  start-page: 377
  year: 2001
  ident: CIT0008
  publication-title: Zeitschrift für Angewandte Mathematik und Mechanik
  doi: 10.1002/1521-4001(200106)81:6<377::AID-ZAMM377>3.0.CO;2-Q
– volume: 134
  start-page: 85
  year: 2001
  ident: CIT0003
  publication-title: Journal of Computer Application and Mathematics
  doi: 10.1016/S0377-0427(00)00530-6
– volume-title: Numercial Analysis for Integral and Related Operator Equations
  year: 1991
  ident: CIT0014
SSID ssj0045460
Score 1.6357658
Snippet A straightforward method for the approximate solution of doubly periodic Riemann boundary value problems for analytic functions is proposed through the...
SourceID crossref
informaworld
SourceType Index Database
Enrichment Source
Publisher
StartPage 1047
SubjectTerms 2000 Mathematics Subject Classifications: 30E25
Approximate solution
Complex splines
Doubly periodic Riemann boundary value problem
Title Spline approximate solution for doubly periodic Riemann boundary value problem
URI https://www.tandfonline.com/doi/abs/10.1080/17476930600740887
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals
  customDbUrl:
  eissn: 1747-6941
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045460
  issn: 1747-6933
  databaseCode: TFW
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5k8aAH3-L6IgdPQrFtkqY9irh4cRFdcW-leUFBurLtyu6_N0lTcVn1oNeSpOlkXp3MfANwEYswEmEhAxZrGZAoFAGnlAVKSk0yInSYSddsgg2H6XicPfjcnNqnVdp_aN0CRThdbYW74HWXEXdlnGjXwc9CqxMrJUYDG7NvxXI0eOn0MKEk8eWQLDDDcXen-d0KS1ZpCbP0i7UZbP9znzuw5d1MdN3yxS6sqWoPNu8_MVrrfRg-2WJchRyq-Lw0jxXqGBGZnSE5mfHXBbJQyBNZCvRYmrlVhbjrxDRdIAsUrpBvSXMAz4Pb0c1d4LsrBMIQy5BExZk5PpFwlYS8YEyQRGOSpZJKFw-KhWBCaXN0OmUFZjEXKeO21DWiqojwIfSqSaWOAKWSYEFDoY3vZz_ZLKqkUhRrhnXEiz5cdtTN31oQjTzy2KQrROpD-JX-eeMiF7ptM7I6PG_mTR_oL1Pwj686_uO8E9hoIzE2D_AUes10ps5gXbw3ZT09d1z4AauD2_E
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90CuqD3-L8zINPQrFtkqZ9FHFM3IboRN9Kmw8oSCdbJ9t_b5K2sjH1QV9LLk3vLrnr5e53ABc-dz3uJsJhvhIO8VzupJQyRwqhSES4ciNhm02wXi98fY0eqoDbqEqrNP_QqgSKsGe12dwmGF2nxF1pL9q28DPY6sRsk2VYodrOGuz8fuulPokJJUFVEMkcPR7Xt5rfTTFnl-ZQS2fsTWvrvyvdhs3K00TXpWrswJLMd2Gj-wXTOtqD3pOpx5XIAotPMv1YoloXkV4aEoNx-jZFBg15IDKOHjNNm-cotc2YhlNksMIlqrrS7MNz67Z_03aqBgsO126S5on0Iy1BHqQycNOEMU4ChUkUCipsSMjnnHGptPRUyBLM_JSHLDXVrh6ViYcPoJEPcnkIKBQEc-pypd0_88l6UimkpFgxrLw0acJlzd74vcTRiL0KnnSBSU1wZwUQFzZ4ocpOI4vD42JSNIH-QoJ_fNXRH-nOYa3d73bizl3v_hjWy8CMSQs8gUYxHMtTWOUfRTYanlmV_ASgjuAb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FdGDb3F95uBJKPaRNu1R1KKoZdEVvZXmBQXpLrtd2f33Jmkru6x60GvJpOlkkkwnM98HcOYy22F2xi3iSm5hx2YW9X1iCc4ljjCTdsQN2QRJkvDtLerUuTnDOq1S_0PLCijC7NV6cfe5bDLiLpQTbRj8NLQ61qtkEZaU2xxoA-_Gr81GjH0c1PWQxFLtveZS87suZo6lGdDSqeMm3vjnQDdhvfYz0WVlGFuwIIptWHv8Amkd7kDyrKtxBTKw4uNcPRaosUSkRoZ4b0TfJ0hjIfd4ztBTrmSLAlFDxTSYII0ULlDNSbMLL_FN9-rWqukVLKacJKUS4UZq_lhARWDTjBCGA-nhKOQ-NwEhlzHChFRzJ0OSecSlLCRU17o6vsgcbw9aRa8Q-4BCjj3m20wq509_supUcCF8TxJPOjRrw3mj3bRfoWikTg1OOqekNtjT-k9LE7qQFc_IfPO0HJdt8H8R8X581cEf5U5hpXMdpw93yf0hrFZRGZ0TeAStcjASx7DMPsp8ODgxBvkJGbvezQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spline+approximate+solution+for+doubly+periodic+Riemann+boundary+value+problem&rft.jtitle=Complex+variables+and+elliptic+equations&rft.au=Li%2C+Xing&rft.date=2006-08-01&rft.issn=1747-6933&rft.eissn=1747-6941&rft.volume=51&rft.issue=8-11&rft.spage=1047&rft.epage=1058&rft_id=info:doi/10.1080%2F17476930600740887&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_17476930600740887
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1747-6933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1747-6933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1747-6933&client=summon