Assessing citation appropriateness through masked graph autoencoder

This study proposes a novel network-based detection method for assessing citation reliability and identifying manipulative practices. Applying a Masked Graph Autoencoder, the approach learns expected citation patterns by iteratively masking and reconstructing network edges. High reconstruction error...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Procedia computer science Ročník 270; s. 273 - 281
Hlavní autoři: Avros, Renata, Volkovich, Zeev
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2025
Témata:
ISSN:1877-0509, 1877-0509
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study proposes a novel network-based detection method for assessing citation reliability and identifying manipulative practices. Applying a Masked Graph Autoencoder, the approach learns expected citation patterns by iteratively masking and reconstructing network edges. High reconstruction errors flag manipulated citations, while genuine citations are accurately reconstructed due to their structural robustness. The reconstruction error provides a quantitative measure of reliability, enabling automated, large-scale detection of citation anomalies. This graph-based deep learning approach captures complex network relationships, reducing the need for manual audits.
ISSN:1877-0509
1877-0509
DOI:10.1016/j.procs.2025.09.146