Assessing citation appropriateness through masked graph autoencoder
This study proposes a novel network-based detection method for assessing citation reliability and identifying manipulative practices. Applying a Masked Graph Autoencoder, the approach learns expected citation patterns by iteratively masking and reconstructing network edges. High reconstruction error...
Uloženo v:
| Vydáno v: | Procedia computer science Ročník 270; s. 273 - 281 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
2025
|
| Témata: | |
| ISSN: | 1877-0509, 1877-0509 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This study proposes a novel network-based detection method for assessing citation reliability and identifying manipulative practices. Applying a Masked Graph Autoencoder, the approach learns expected citation patterns by iteratively masking and reconstructing network edges. High reconstruction errors flag manipulated citations, while genuine citations are accurately reconstructed due to their structural robustness. The reconstruction error provides a quantitative measure of reliability, enabling automated, large-scale detection of citation anomalies. This graph-based deep learning approach captures complex network relationships, reducing the need for manual audits. |
|---|---|
| ISSN: | 1877-0509 1877-0509 |
| DOI: | 10.1016/j.procs.2025.09.146 |