Smart Zoning for Enhanced Urban Safety: Crime Risk Assessment Using Unsupervised Learning

The primary objective of this article is to enhance community safety by employing unsupervised machine learning algorithms in the development of a mobile application that provides accessible information on crime risks in specific areas for the users. By allowing individuals to avoid high-risk zones...

Full description

Saved in:
Bibliographic Details
Published in:Procedia computer science Vol. 270; pp. 2929 - 2938
Main Authors: Mureşan, Sabina-Petruţa, Căpîlnaş, Matei-Vasile, Coroiu, Adriana Mihaela
Format: Journal Article
Language:English
Published: Elsevier B.V 2025
Subjects:
ISSN:1877-0509, 1877-0509
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The primary objective of this article is to enhance community safety by employing unsupervised machine learning algorithms in the development of a mobile application that provides accessible information on crime risks in specific areas for the users. By allowing individuals to avoid high-risk zones or take precautionary measures, the application aims to stimulate local economic activities such as tourism and real estate in safer areas. In the development of the application, the following unsupervised machine learning algorithms were used: K-Means, DBSCAN, and Hierarchical Clustering, along with an examination of environmental and social factors that contribute to urban crime. The experimental chapter presents the process of translating data into risk zones by comparing the performance of the three clustering algorithms. The algorithm with the best performance is integrated into the mobile application to ensure optimal functionality.
AbstractList The primary objective of this article is to enhance community safety by employing unsupervised machine learning algorithms in the development of a mobile application that provides accessible information on crime risks in specific areas for the users. By allowing individuals to avoid high-risk zones or take precautionary measures, the application aims to stimulate local economic activities such as tourism and real estate in safer areas. In the development of the application, the following unsupervised machine learning algorithms were used: K-Means, DBSCAN, and Hierarchical Clustering, along with an examination of environmental and social factors that contribute to urban crime. The experimental chapter presents the process of translating data into risk zones by comparing the performance of the three clustering algorithms. The algorithm with the best performance is integrated into the mobile application to ensure optimal functionality.
Author Mureşan, Sabina-Petruţa
Căpîlnaş, Matei-Vasile
Coroiu, Adriana Mihaela
Author_xml – sequence: 1
  givenname: Sabina-Petruţa
  surname: Mureşan
  fullname: Mureşan, Sabina-Petruţa
  organization: Babeş-Bolyai University, M. Kogălniceanu 1 Street, Cluj-Napoca 400347, Romania
– sequence: 2
  givenname: Matei-Vasile
  surname: Căpîlnaş
  fullname: Căpîlnaş, Matei-Vasile
  email: matei.capilnas@ubbcluj.ro
  organization: Babeş-Bolyai University, M. Kogălniceanu 1 Street, Cluj-Napoca 400347, Romania
– sequence: 3
  givenname: Adriana Mihaela
  surname: Coroiu
  fullname: Coroiu, Adriana Mihaela
  organization: Babeş-Bolyai University, M. Kogălniceanu 1 Street, Cluj-Napoca 400347, Romania
BookMark eNp9kM9KAzEQh4NUsNY-gZe8wK7JptndCB5KqX-gIFj3oJeQ3Uw01WZLZi307d21Hjw5lxkGvh8z3zkZhTYAIZecpZzx_GqT7mLbYJqxTKZMpTMuT8iYl0WRMMnU6M98RqaIG9aXKEvFizF5WW9N7OhrG3x4o66NdBneTWjA0irWJtC1cdAdruki-i3QJ48fdI4IiFsIHa1wwKqAXzuIe489tgITh7ALcurMJ8L0t09Idbt8Xtwnq8e7h8V8lTR8JmSinHTCuryxqlAcajC2sJkSNpesrpksy4xnVvRryDgDmamZNbXJobamLIQREyKOuU1sESM4vetPNfGgOdODIL3RP4L0IEgzpXtBPXVzpKA_be8hamw8DH_7CE2nbev_5b8BwXlzIQ
Cites_doi 10.1007/s10611-018-9774-y
10.3389/fdata.2023.1124526
10.1016/j.jeconc.2023.100034
10.1145/3229329.3229331
10.1145/3190345
10.1109/TPAMI.2002.1114856
10.1016/j.clsr.2008.07.003
10.3390/app13052942
10.1038/s41598-020-70808-2
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2025.09.415
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 2938
ExternalDocumentID 10_1016_j_procs_2025_09_415
S1877050925030881
GroupedDBID --K
0R~
1B1
457
5VS
6I.
71M
9DU
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
AAYWO
ABMAC
ABWVN
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADNMO
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
P2P
ROL
SES
SSZ
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c1435-9f5f3df6cd9791ebead7d293d650bb0588212d3eade210e5294daba6ebda873a3
ISSN 1877-0509
IngestDate Thu Nov 27 00:31:19 EST 2025
Sat Nov 29 17:08:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords DBSCAN
security
clustering
Hierarchical Clustering
K-Means
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1435-9f5f3df6cd9791ebead7d293d650bb0588212d3eade210e5294daba6ebda873a3
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2025.09.415
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_procs_2025_09_415
elsevier_sciencedirect_doi_10_1016_j_procs_2025_09_415
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Helfgott, J.: Criminal Behavior: Theories, Typologies and Criminal Justice. SAGE Publications (2008)
Sarkar, G., Shukla, S.K.: Behavioral analysis of cybercrime: Paving the way for effective policing strategies. Journal of Economic Criminology 2, 100034 (2023)
Belesiotis, A., Papadakis, G., Skoutas, D.: Analyzing and predicting spatial crime distribution using crowdsourced and open data. ACM Transactions on Spatial Algorithms and Systems (TSAS) 3(4), 1–31 (2018)
Nuth, M.: Taking advantage of new technologies: For and against crime. Computer Law Security Review 24(5) (2008)
Maulik, U., Bandyopadhyay, S.: Performance evaluation of some clustering algorithms and validity indices. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 24(12) (2002)
De Nadai, M., Xu, Y., Letouzé, E., González, M.C., Lepri, B.: Socio-economic, built environment, and mobility conditions associated with crime: a study of multiple cities. Scientific reports 10(1), 13871 (2020)
Luca, M., Campedelli, G.M., Centellegher, S., Tizzoni, M., Lepri, B.: Crime, inequality and public health: A survey of emerging trends in urban data science. Frontiers in big Data 6, 1124526 (2023)
Paoli, L., Visschers, J., Verstraete, C.: The impact of cybercrime on businesses: A novel conceptual framework and its application to belgium. Crime, Law and Social Change 70, 397–420 (2018)
Rachwal, A., Poplawska, E., Gorgol, I., Cieplak, T., Pliszczuk, D., Skowron, L., Rymarczyk, T.: Determining the quality of a dataset in clustering terms. Applied Sciences 13(5) (2023)
Zhao, X., Tang, J.: Crime in urban areas: A data mining perspective. Acm Sigkdd Explorations Newsletter 20(1), 1–12 (2018)
10.1016/j.procs.2025.09.415_bib4
10.1016/j.procs.2025.09.415_bib3
10.1016/j.procs.2025.09.415_bib6
10.1016/j.procs.2025.09.415_bib5
10.1016/j.procs.2025.09.415_bib8
10.1016/j.procs.2025.09.415_bib7
10.1016/j.procs.2025.09.415_bib9
10.1016/j.procs.2025.09.415_bib10
10.1016/j.procs.2025.09.415_bib2
10.1016/j.procs.2025.09.415_bib1
References_xml – reference: Luca, M., Campedelli, G.M., Centellegher, S., Tizzoni, M., Lepri, B.: Crime, inequality and public health: A survey of emerging trends in urban data science. Frontiers in big Data 6, 1124526 (2023)
– reference: De Nadai, M., Xu, Y., Letouzé, E., González, M.C., Lepri, B.: Socio-economic, built environment, and mobility conditions associated with crime: a study of multiple cities. Scientific reports 10(1), 13871 (2020)
– reference: Belesiotis, A., Papadakis, G., Skoutas, D.: Analyzing and predicting spatial crime distribution using crowdsourced and open data. ACM Transactions on Spatial Algorithms and Systems (TSAS) 3(4), 1–31 (2018)
– reference: Nuth, M.: Taking advantage of new technologies: For and against crime. Computer Law Security Review 24(5) (2008)
– reference: Maulik, U., Bandyopadhyay, S.: Performance evaluation of some clustering algorithms and validity indices. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 24(12) (2002)
– reference: Helfgott, J.: Criminal Behavior: Theories, Typologies and Criminal Justice. SAGE Publications (2008)
– reference: Zhao, X., Tang, J.: Crime in urban areas: A data mining perspective. Acm Sigkdd Explorations Newsletter 20(1), 1–12 (2018)
– reference: Rachwal, A., Poplawska, E., Gorgol, I., Cieplak, T., Pliszczuk, D., Skowron, L., Rymarczyk, T.: Determining the quality of a dataset in clustering terms. Applied Sciences 13(5) (2023)
– reference: Sarkar, G., Shukla, S.K.: Behavioral analysis of cybercrime: Paving the way for effective policing strategies. Journal of Economic Criminology 2, 100034 (2023)
– reference: Paoli, L., Visschers, J., Verstraete, C.: The impact of cybercrime on businesses: A novel conceptual framework and its application to belgium. Crime, Law and Social Change 70, 397–420 (2018)
– ident: 10.1016/j.procs.2025.09.415_bib7
  doi: 10.1007/s10611-018-9774-y
– ident: 10.1016/j.procs.2025.09.415_bib4
  doi: 10.3389/fdata.2023.1124526
– ident: 10.1016/j.procs.2025.09.415_bib9
  doi: 10.1016/j.jeconc.2023.100034
– ident: 10.1016/j.procs.2025.09.415_bib10
  doi: 10.1145/3229329.3229331
– ident: 10.1016/j.procs.2025.09.415_bib3
– ident: 10.1016/j.procs.2025.09.415_bib1
  doi: 10.1145/3190345
– ident: 10.1016/j.procs.2025.09.415_bib5
  doi: 10.1109/TPAMI.2002.1114856
– ident: 10.1016/j.procs.2025.09.415_bib6
  doi: 10.1016/j.clsr.2008.07.003
– ident: 10.1016/j.procs.2025.09.415_bib8
  doi: 10.3390/app13052942
– ident: 10.1016/j.procs.2025.09.415_bib2
  doi: 10.1038/s41598-020-70808-2
SSID ssj0000388917
Score 2.3426826
Snippet The primary objective of this article is to enhance community safety by employing unsupervised machine learning algorithms in the development of a mobile...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 2929
SubjectTerms clustering
DBSCAN
Hierarchical Clustering
K-Means
security
Title Smart Zoning for Enhanced Urban Safety: Crime Risk Assessment Using Unsupervised Learning
URI https://dx.doi.org/10.1016/j.procs.2025.09.415
Volume 270
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqhQMX3ojlJR_YU7CUxkkcc6uqrrjsCrFbtHCJ_ApkVdKqj9We-D38TGbspI3oCgESlyix5Dia-TwznsyDkNcm1U7lsWHaiISlWlqmi0qw1FhdweaTwyI0mxCnp8XFhXw_GPzocmGuZqJpiutrufivrIYxYDamzv4Fu7cvhQG4B6bDFdgO1z9i_Nk3GIw-BzcrBhFOmq_hN_90qXE3q8qtfZ0nbOnlog8YXD7aFuiMQhDBtFltFihHVjCxLcL6pW_J-gwDAJcPSse-EFGrTHssdEfj7Egetz5WBYdwxbCF1wbHR3wXJORNWr7wf-0ns0aFeSGXaO1q9lGt6tn2zeP5cl5vvFSzQNBGRSc1xv6rvgsjJDoHj9peVo0XwoUQDOvSBB11w1gruZPQc6STvbL1nbj2MZSN2dMRwV1xiRrKYMH2JMNKt2nIKv2l-PYZrovLgqXIQSDDOftWIjKJwYMn33fePKypI3175-2HdiWufDDh3lo3m0E90-b8PrnbnknoKGDpARm45iG51_X7oK34f0Q-eWjRAC0K0KIdtKiHFg3Qeks9sCgCi-6ART2waB9YtAPWYzI9npyP37G2NQczaGAzWWUVt1VurBRyCIJAWWGB4hYMfq3jDM5tw8RyjMZPhrHLEplapVXutFWF4Io_IQfNvHFPCTU85xbUjM5jB1rbSO5SLqqiSp1IdWYOyZuOUuUiVGApu9DEy9ITtkTClrEsgbCHJO-oWba4D8ZhCfz_3cRn_zrxObmDT8Ev94IcwC5yL8ltc7WuV8tXHic_AROMlpo
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+Zoning+for+Enhanced+Urban+Safety%3A+Crime+Risk+Assessment+Using+Unsupervised+Learning&rft.jtitle=Procedia+computer+science&rft.au=Mure%C5%9Fan%2C+Sabina-Petru%C5%A3a&rft.au=C%C4%83p%C3%AElna%C5%9F%2C+Matei-Vasile&rft.au=Coroiu%2C+Adriana+Mihaela&rft.date=2025&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=270&rft.spage=2929&rft.epage=2938&rft_id=info:doi/10.1016%2Fj.procs.2025.09.415&rft.externalDocID=S1877050925030881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon