An Improved CNN model for Identifying Tomato Leaf Diseases

A major loss in gross domestic product, quantity and quality of products produced, as well as tomato production, is caused by diseases in tomato leaves due to  which farmers have a difficult time in controlling and monitoring the health of tomato leaves, one of which is leaf disease. In our  project...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Transdisciplinary journal of engineering & science Ročník 15
Hlavný autor: BHARALI, DEBABRAT
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 25.04.2024
ISSN:1949-0569, 1949-0569
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A major loss in gross domestic product, quantity and quality of products produced, as well as tomato production, is caused by diseases in tomato leaves due to  which farmers have a difficult time in controlling and monitoring the health of tomato leaves, one of which is leaf disease. In our  project, we developed an Enhanced CNN by using data augmentation techniques to identify the seven classes(blight ,leaf curl, leaf miner ,Alteneria, leaf spot,  cutwork infected) of  tomato leaf diseases. Using 27807 trainable parameters, the enhanced CNN obtains the maximum training accuracy of ninety nine point nine eight percent(99.98%) and validating accuracy of ninety eight point four percent(98.4%) .With fewer parameters, The Enhanced CNN can more accurately determine the type of illness of tomato leaf. Our Enhanced CNN model also determine the type of illness of tomato leaf when tested with the images of diseased tomato leaf collected from the internet sources.Using 152850 trainable parameters the enhanced CNN obtain the maximum training accuracy of 99.68% and validation accuracy of 89%.
AbstractList A major loss in gross domestic product, quantity and quality of products produced, as well as tomato production, is caused by diseases in tomato leaves due to  which farmers have a difficult time in controlling and monitoring the health of tomato leaves, one of which is leaf disease. In our  project, we developed an Enhanced CNN by using data augmentation techniques to identify the seven classes(blight ,leaf curl, leaf miner ,Alteneria, leaf spot,  cutwork infected) of  tomato leaf diseases. Using 27807 trainable parameters, the enhanced CNN obtains the maximum training accuracy of ninety nine point nine eight percent(99.98%) and validating accuracy of ninety eight point four percent(98.4%) .With fewer parameters, The Enhanced CNN can more accurately determine the type of illness of tomato leaf. Our Enhanced CNN model also determine the type of illness of tomato leaf when tested with the images of diseased tomato leaf collected from the internet sources.Using 152850 trainable parameters the enhanced CNN obtain the maximum training accuracy of 99.68% and validation accuracy of 89%.
Author BHARALI, DEBABRAT
Author_xml – sequence: 1
  givenname: DEBABRAT
  surname: BHARALI
  fullname: BHARALI, DEBABRAT
BookMark eNpNz8FLwzAYBfAgE5xzJ_-B3KUuyde0ibdRnRbKvMxzSft9kcrajGQI--_V6cHTe4fHg981m01hIsZupbhXSud6pYTKV0IoDRdsLm1uM6ELO_vXr9gypQ_xvTGlloWas4f1xOvxEMMnIa-2Wz4GpD33IfIaaToO_jRM73wXRncMvCHn-eOQyCVKN-zSu32i5V8u2NvmaVe9ZM3rc12tm6yXOUDmvekMIOYS0dtSgdGAonQGew-gSXVWarCgkbDznjolnHCAve6sKayBBbv7_e1jSCmSbw9xGF08tVK0Z3n7I2_PcvgC3KtLXg
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.22545/2024/00253
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1949-0569
ExternalDocumentID 10_22545_2024_00253
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c1433-ff8b83dd41ddf9723853d07a8dcf335e2b9153935dedbffeb20a0a3dc5b986983
ISSN 1949-0569
IngestDate Sat Nov 29 06:10:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1433-ff8b83dd41ddf9723853d07a8dcf335e2b9153935dedbffeb20a0a3dc5b986983
OpenAccessLink https://www.atlas-tjes.org/index.php/tjes/article/download/1014/406
ParticipantIDs crossref_primary_10_22545_2024_00253
PublicationCentury 2000
PublicationDate 2024-04-25
PublicationDateYYYYMMDD 2024-04-25
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-25
  day: 25
PublicationDecade 2020
PublicationTitle Transdisciplinary journal of engineering & science
PublicationYear 2024
SSID ssj0002875162
Score 2.274942
Snippet A major loss in gross domestic product, quantity and quality of products produced, as well as tomato production, is caused by diseases in tomato leaves due to ...
SourceID crossref
SourceType Index Database
Title An Improved CNN model for Identifying Tomato Leaf Diseases
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1949-0569
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002875162
  issn: 1949-0569
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1949-0569
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002875162
  issn: 1949-0569
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1LSwMxEMeDr4MexCe-yaHXhZpHm3jbiuJBi0gFbyWbB3hwFVulJz-7k8l2u5Ue9OBlaUMTtv0tM5Np5j-EtLwS3gbTyYrCukxo3850B95GUVwtC2mYQdK33X5fPT3p-6pD9gjbCXTLUk0m-u1fUcMYwI6ls3_AXS8KA_AaoMMVsMP1V-Bjmg8zBTF32--nXjd4mjAV5abCpsHrS-z6cutNiAqc8U-aUTNQRR82V7Lb0JjwMxFDfHQqN1pv7W_y2IgZzdlVL-895INmcoHhmZRUiFzZQy10BjFSsmp-wdjUiMpF9hiMhYjaFXFpPMjIkjLwvO71D39UnxKE_QkuMIzThzh5mayyrtTRfN19zZJpsO2T59g8tr65VIuJ82OCR2DdP29EH40wYrBFNqv4n-aJ2zZZ8uUO2birxXNHu-QiL-mUIAWCFAlSIEgbBGkiSCNBOiW4Rx6vrwaXN1nV4iKzEKjyLARVKO6cOHcuYAM4yV27a5SzgXPpWaHBJWkunXdFCL5gbdM23FlZaNXRiu-TlfK19AeEMmaUdRDeS2uF1cFwpp0IkgVwZyLwQ9KafvXhW1IyGS74hY9-97Fjsj57Xk7Iyvj9w5-SNfs5fh69n2Fm4wwZfQMt0Dky
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+CNN+model+for+Identifying+Tomato+Leaf+Diseases&rft.jtitle=Transdisciplinary+journal+of+engineering+%26+science&rft.au=BHARALI%2C+DEBABRAT&rft.date=2024-04-25&rft.issn=1949-0569&rft.eissn=1949-0569&rft.volume=15&rft_id=info:doi/10.22545%2F2024%2F00253&rft.externalDBID=n%2Fa&rft.externalDocID=10_22545_2024_00253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-0569&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-0569&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-0569&client=summon