An Improved CNN model for Identifying Tomato Leaf Diseases
A major loss in gross domestic product, quantity and quality of products produced, as well as tomato production, is caused by diseases in tomato leaves due to which farmers have a difficult time in controlling and monitoring the health of tomato leaves, one of which is leaf disease. In our project...
Uložené v:
| Vydané v: | Transdisciplinary journal of engineering & science Ročník 15 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
25.04.2024
|
| ISSN: | 1949-0569, 1949-0569 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A major loss in gross domestic product, quantity and quality of products produced, as well as tomato production, is caused by diseases in tomato leaves due to which farmers have a difficult time in controlling and monitoring the health of tomato leaves, one of which is leaf disease. In our project, we developed an Enhanced CNN by using data augmentation techniques to identify the seven classes(blight ,leaf curl, leaf miner ,Alteneria, leaf spot, cutwork infected) of tomato leaf diseases. Using 27807 trainable parameters, the enhanced CNN obtains the maximum training accuracy of ninety nine point nine eight percent(99.98%) and validating accuracy of ninety eight point four percent(98.4%) .With fewer parameters, The Enhanced CNN can more accurately determine the type of illness of tomato leaf. Our Enhanced CNN model also determine the type of illness of tomato leaf when tested with the images of diseased tomato leaf collected from the internet sources.Using 152850 trainable parameters the enhanced CNN obtain the maximum training accuracy of 99.68% and validation accuracy of 89%. |
|---|---|
| AbstractList | A major loss in gross domestic product, quantity and quality of products produced, as well as tomato production, is caused by diseases in tomato leaves due to which farmers have a difficult time in controlling and monitoring the health of tomato leaves, one of which is leaf disease. In our project, we developed an Enhanced CNN by using data augmentation techniques to identify the seven classes(blight ,leaf curl, leaf miner ,Alteneria, leaf spot, cutwork infected) of tomato leaf diseases. Using 27807 trainable parameters, the enhanced CNN obtains the maximum training accuracy of ninety nine point nine eight percent(99.98%) and validating accuracy of ninety eight point four percent(98.4%) .With fewer parameters, The Enhanced CNN can more accurately determine the type of illness of tomato leaf. Our Enhanced CNN model also determine the type of illness of tomato leaf when tested with the images of diseased tomato leaf collected from the internet sources.Using 152850 trainable parameters the enhanced CNN obtain the maximum training accuracy of 99.68% and validation accuracy of 89%. |
| Author | BHARALI, DEBABRAT |
| Author_xml | – sequence: 1 givenname: DEBABRAT surname: BHARALI fullname: BHARALI, DEBABRAT |
| BookMark | eNpNz8FLwzAYBfAgE5xzJ_-B3KUuyde0ibdRnRbKvMxzSft9kcrajGQI--_V6cHTe4fHg981m01hIsZupbhXSud6pYTKV0IoDRdsLm1uM6ELO_vXr9gypQ_xvTGlloWas4f1xOvxEMMnIa-2Wz4GpD33IfIaaToO_jRM73wXRncMvCHn-eOQyCVKN-zSu32i5V8u2NvmaVe9ZM3rc12tm6yXOUDmvekMIOYS0dtSgdGAonQGew-gSXVWarCgkbDznjolnHCAve6sKayBBbv7_e1jSCmSbw9xGF08tVK0Z3n7I2_PcvgC3KtLXg |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.22545/2024/00253 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1949-0569 |
| ExternalDocumentID | 10_22545_2024_00253 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E |
| ID | FETCH-LOGICAL-c1433-ff8b83dd41ddf9723853d07a8dcf335e2b9153935dedbffeb20a0a3dc5b986983 |
| ISSN | 1949-0569 |
| IngestDate | Sat Nov 29 06:10:16 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1433-ff8b83dd41ddf9723853d07a8dcf335e2b9153935dedbffeb20a0a3dc5b986983 |
| OpenAccessLink | https://www.atlas-tjes.org/index.php/tjes/article/download/1014/406 |
| ParticipantIDs | crossref_primary_10_22545_2024_00253 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-25 |
| PublicationDateYYYYMMDD | 2024-04-25 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | Transdisciplinary journal of engineering & science |
| PublicationYear | 2024 |
| SSID | ssj0002875162 |
| Score | 2.274942 |
| Snippet | A major loss in gross domestic product, quantity and quality of products produced, as well as tomato production, is caused by diseases in tomato leaves due to ... |
| SourceID | crossref |
| SourceType | Index Database |
| Title | An Improved CNN model for Identifying Tomato Leaf Diseases |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1949-0569 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002875162 issn: 1949-0569 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1949-0569 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002875162 issn: 1949-0569 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1LSwMxEMeDr4MexCe-yaHXhZpHm3jbiuJBi0gFbyWbB3hwFVulJz-7k8l2u5Ue9OBlaUMTtv0tM5Np5j-EtLwS3gbTyYrCukxo3850B95GUVwtC2mYQdK33X5fPT3p-6pD9gjbCXTLUk0m-u1fUcMYwI6ls3_AXS8KA_AaoMMVsMP1V-Bjmg8zBTF32--nXjd4mjAV5abCpsHrS-z6cutNiAqc8U-aUTNQRR82V7Lb0JjwMxFDfHQqN1pv7W_y2IgZzdlVL-895INmcoHhmZRUiFzZQy10BjFSsmp-wdjUiMpF9hiMhYjaFXFpPMjIkjLwvO71D39UnxKE_QkuMIzThzh5mayyrtTRfN19zZJpsO2T59g8tr65VIuJ82OCR2DdP29EH40wYrBFNqv4n-aJ2zZZ8uUO2birxXNHu-QiL-mUIAWCFAlSIEgbBGkiSCNBOiW4Rx6vrwaXN1nV4iKzEKjyLARVKO6cOHcuYAM4yV27a5SzgXPpWaHBJWkunXdFCL5gbdM23FlZaNXRiu-TlfK19AeEMmaUdRDeS2uF1cFwpp0IkgVwZyLwQ9KafvXhW1IyGS74hY9-97Fjsj57Xk7Iyvj9w5-SNfs5fh69n2Fm4wwZfQMt0Dky |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+CNN+model+for+Identifying+Tomato+Leaf+Diseases&rft.jtitle=Transdisciplinary+journal+of+engineering+%26+science&rft.au=BHARALI%2C+DEBABRAT&rft.date=2024-04-25&rft.issn=1949-0569&rft.eissn=1949-0569&rft.volume=15&rft_id=info:doi/10.22545%2F2024%2F00253&rft.externalDBID=n%2Fa&rft.externalDocID=10_22545_2024_00253 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-0569&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-0569&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-0569&client=summon |