Depth, Highness and DNR degrees

We study Bennett deep sequences in the context of recursion theory; in particular we investigate the notions of O(1)-deepK, O(1)-deepC , order-deep K and order-deep C sequences. Our main results are that Martin-Loef random sets are not order-deepC , that every many-one degree contains a set which is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics and theoretical computer science Ročník 19 no. 4, FCT '15; číslo special issue FCT'15
Hlavní autoři: Moser, Philippe, Stephan, Frank
Médium: Journal Article
Jazyk:angličtina
Vydáno: Discrete Mathematics & Theoretical Computer Science 26.10.2017
Témata:
ISSN:1365-8050, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study Bennett deep sequences in the context of recursion theory; in particular we investigate the notions of O(1)-deepK, O(1)-deepC , order-deep K and order-deep C sequences. Our main results are that Martin-Loef random sets are not order-deepC , that every many-one degree contains a set which is not O(1)-deepC , that O(1)-deepC sets and order-deepK sets have high or DNR Turing degree and that no K-trival set is O(1)-deepK. Comment: journal version, dmtcs
ISSN:1365-8050
1365-8050
DOI:10.23638/DMTCS-19-4-2