Depth, Highness and DNR degrees
We study Bennett deep sequences in the context of recursion theory; in particular we investigate the notions of O(1)-deepK, O(1)-deepC , order-deep K and order-deep C sequences. Our main results are that Martin-Loef random sets are not order-deepC , that every many-one degree contains a set which is...
Uloženo v:
| Vydáno v: | Discrete mathematics and theoretical computer science Ročník 19 no. 4, FCT '15; číslo special issue FCT'15 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Discrete Mathematics & Theoretical Computer Science
26.10.2017
|
| Témata: | |
| ISSN: | 1365-8050, 1365-8050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study Bennett deep sequences in the context of recursion theory; in particular we investigate the notions of O(1)-deepK, O(1)-deepC , order-deep K and order-deep C sequences. Our main results are that Martin-Loef random sets are not order-deepC , that every many-one degree contains a set which is not O(1)-deepC , that O(1)-deepC sets and order-deepK sets have high or DNR Turing degree and that no K-trival set is O(1)-deepK.
Comment: journal version, dmtcs |
|---|---|
| ISSN: | 1365-8050 1365-8050 |
| DOI: | 10.23638/DMTCS-19-4-2 |