Some procedures for solving special max-min fractional rank-two reverse-convex programming problems
In this paper we suggest some procedures for solving two special classes of \(\max\)-\(\min\) fractional reverse-convex programs. We show that a special bilinear fractional max-min reverse-convex program can be solved by a linear reverse-convex programming problem. For a linear fractional max-min re...
Uloženo v:
| Vydáno v: | Journal of numerical analysis and approximation theory Ročník 33; číslo 2 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Publishing House of the Romanian Academy
01.08.2004
|
| Témata: | |
| ISSN: | 2457-6794, 2501-059X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we suggest some procedures for solving two special classes of \(\max\)-\(\min\) fractional reverse-convex programs. We show that a special bilinear fractional max-min reverse-convex program can be solved by a linear reverse-convex programming problem. For a linear fractional max-min reverse-convex program, possessing two reverse-convex sets, we propose a parametrical method. The particularity of this procedure is the fact that the max-min optimal solution of the original problem is obtained by solving at each iteration two linear reverse-convex programs with a rank-two monotonicity property. |
|---|---|
| ISSN: | 2457-6794 2501-059X |
| DOI: | 10.33993/jnaat332-772 |