Some procedures for solving special max-min fractional rank-two reverse-convex programming problems

In this paper we suggest some procedures for solving two special classes of \(\max\)-\(\min\) fractional reverse-convex programs. We show that a special bilinear fractional max-min reverse-convex program can be solved by a linear reverse-convex programming problem. For a linear fractional max-min re...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of numerical analysis and approximation theory Ročník 33; číslo 2
Hlavní autoři: Doina Ionac, Ştefan Ţigan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Publishing House of the Romanian Academy 01.08.2004
Témata:
ISSN:2457-6794, 2501-059X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we suggest some procedures for solving two special classes of \(\max\)-\(\min\) fractional reverse-convex programs. We show that a special bilinear fractional max-min reverse-convex program can be solved by a linear reverse-convex programming problem. For a linear fractional max-min reverse-convex program, possessing two reverse-convex sets, we propose a parametrical method. The particularity of this procedure is the fact that the max-min optimal solution of the original problem is obtained by solving at each iteration two linear reverse-convex programs with a rank-two monotonicity property.
ISSN:2457-6794
2501-059X
DOI:10.33993/jnaat332-772