On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width

A mixed dominating set for a graph $G = (V,E)$ is a set $S\subseteq V \cup E$ such that every element $x \in (V \cup E) \backslash S$ is either adjacent or incident to an element of $S$. The mixed domination number of a graph $G$, denoted by $\gamma_m(G)$, is the minimum cardinality of mixed dominat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete mathematics and theoretical computer science Ročník 20 no. 2; číslo Graph Theory
Hlavní autori: Rajaati, M., Hooshmandasl, M. R., Dinneen, M. J., Shakiba, A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Discrete Mathematics & Theoretical Computer Science 31.07.2018
Predmet:
ISSN:1365-8050, 1365-8050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A mixed dominating set for a graph $G = (V,E)$ is a set $S\subseteq V \cup E$ such that every element $x \in (V \cup E) \backslash S$ is either adjacent or incident to an element of $S$. The mixed domination number of a graph $G$, denoted by $\gamma_m(G)$, is the minimum cardinality of mixed dominating sets of $G$. Any mixed dominating set with the cardinality of $\gamma_m(G)$ is called a minimum mixed dominating set. The mixed domination set (MDS) problem is to find a minimum mixed dominating set for a graph $G$ and is known to be an NP-complete problem. In this paper, we present a novel approach to find all of the mixed dominating sets, called the AMDS problem, of a graph with bounded tree-width $tw$. Our new technique of assigning power values to edges and vertices, and combining with dynamic programming, leads to a fixed-parameter algorithm of time $O(3^{tw^{2}}\times tw^2 \times |V|)$. This shows that MDS is fixed-parameter tractable with respect to tree-width. In addition, we theoretically improve the proposed algorithm to solve the MDS problem in $O(6^{tw} \times |V|)$ time. Comment: Accepted for the publication in the Journal of Discrete Mathematics & Theoretical Computer Science (DMTCS). 25 pages, 4 figures, 17 tables, 4 algorithms
AbstractList A mixed dominating set for a graph $G = (V,E)$ is a set $S\subseteq V \cup E$ such that every element $x \in (V \cup E) \backslash S$ is either adjacent or incident to an element of $S$. The mixed domination number of a graph $G$, denoted by $\gamma_m(G)$, is the minimum cardinality of mixed dominating sets of $G$. Any mixed dominating set with the cardinality of $\gamma_m(G)$ is called a minimum mixed dominating set. The mixed domination set (MDS) problem is to find a minimum mixed dominating set for a graph $G$ and is known to be an NP-complete problem. In this paper, we present a novel approach to find all of the mixed dominating sets, called the AMDS problem, of a graph with bounded tree-width $tw$. Our new technique of assigning power values to edges and vertices, and combining with dynamic programming, leads to a fixed-parameter algorithm of time $O(3^{tw^{2}}\times tw^2 \times |V|)$. This shows that MDS is fixed-parameter tractable with respect to tree-width. In addition, we theoretically improve the proposed algorithm to solve the MDS problem in $O(6^{tw} \times |V|)$ time.
A mixed dominating set for a graph $G = (V,E)$ is a set $S\subseteq V \cup E$ such that every element $x \in (V \cup E) \backslash S$ is either adjacent or incident to an element of $S$. The mixed domination number of a graph $G$, denoted by $\gamma_m(G)$, is the minimum cardinality of mixed dominating sets of $G$. Any mixed dominating set with the cardinality of $\gamma_m(G)$ is called a minimum mixed dominating set. The mixed domination set (MDS) problem is to find a minimum mixed dominating set for a graph $G$ and is known to be an NP-complete problem. In this paper, we present a novel approach to find all of the mixed dominating sets, called the AMDS problem, of a graph with bounded tree-width $tw$. Our new technique of assigning power values to edges and vertices, and combining with dynamic programming, leads to a fixed-parameter algorithm of time $O(3^{tw^{2}}\times tw^2 \times |V|)$. This shows that MDS is fixed-parameter tractable with respect to tree-width. In addition, we theoretically improve the proposed algorithm to solve the MDS problem in $O(6^{tw} \times |V|)$ time. Comment: Accepted for the publication in the Journal of Discrete Mathematics & Theoretical Computer Science (DMTCS). 25 pages, 4 figures, 17 tables, 4 algorithms
Author Hooshmandasl, M. R.
Rajaati, M.
Dinneen, M. J.
Shakiba, A.
Author_xml – sequence: 1
  givenname: M.
  surname: Rajaati
  fullname: Rajaati, M.
– sequence: 2
  givenname: M. R.
  surname: Hooshmandasl
  fullname: Hooshmandasl, M. R.
– sequence: 3
  givenname: M. J.
  surname: Dinneen
  fullname: Dinneen, M. J.
– sequence: 4
  givenname: A.
  surname: Shakiba
  fullname: Shakiba, A.
BookMark eNpNkM1PwjAYxhuDiYAevfcfqLZvt247GvwiwXAQz0u7voUStpKuBvnvnWCMp-cjT36HZ0JGXeiQkFvB70AqWd4_vq1m7ww4AwYXZCykylnJcz7656_IpO-3nAuosmJMzLKjzn-hZXsddYsJI01RN0kbv_PpSIOjaYO0_dlQG1rf6eRDR_cxmB221IVI11HvNz09-LShJnx2dpimiMgO3qbNNbl0etfjza9Oycfz02r2yhbLl_nsYcEakUlgmbU8AweVyRUH1FZZJ0FhZfOyAANCqMJkUupCgOWF4QjoFBq0tnHGVnJK5meuDXpb76NvdTzWQfv6VIS4rnVMvtlh7TgolZcZIOdZLnlZGlkVgKZsSqFUNrDYmdXE0PcR3R9P8Pp0dn06u4YhDsU3mI10rw
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.23638/DMTCS-20-2-2
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
ExternalDocumentID oai_doaj_org_article_f02665842e00453088b3972eb8c81664
10_23638_DMTCS_20_2_2
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BAIFH
BBTPI
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
ID FETCH-LOGICAL-c1432-4dd042f29b5602ead6df326e9d5872b21167b433a712d07b0e2ef6ebeddcfbd93
IEDL.DBID DOA
ISSN 1365-8050
IngestDate Fri Oct 03 12:52:53 EDT 2025
Sat Nov 29 08:06:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Graph Theory
Language English
License https://arxiv.org/licenses/nonexclusive-distrib/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1432-4dd042f29b5602ead6df326e9d5872b21167b433a712d07b0e2ef6ebeddcfbd93
OpenAccessLink https://doaj.org/article/f02665842e00453088b3972eb8c81664
ParticipantIDs doaj_primary_oai_doaj_org_article_f02665842e00453088b3972eb8c81664
crossref_primary_10_23638_DMTCS_20_2_2
PublicationCentury 2000
PublicationDate 2018-07-31
PublicationDateYYYYMMDD 2018-07-31
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-31
  day: 31
PublicationDecade 2010
PublicationTitle Discrete mathematics and theoretical computer science
PublicationYear 2018
Publisher Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
Score 2.0783985
Snippet A mixed dominating set for a graph $G = (V,E)$ is a set $S\subseteq V \cup E$ such that every element $x \in (V \cup E) \backslash S$ is either adjacent or...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms 05c85
computer science - data structures and algorithms
computer science - discrete mathematics
g.2.2
Title On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width
URI https://doaj.org/article/f02665842e00453088b3972eb8c81664
Volume 20 no. 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQYYCBRwFRHpUHxGY1tZM4HqFQgURLJQoqUxTHtujQFLXh9e-5S9KqTCyMiU5RdA_dd77zd4ScB0HKnRSOQfYImR96iimJUxaQPRPR9mVY3JB7vpf9fjQaqcHKqi-cCSvpgUvFtRwUCZgluUX0ISAoNKRQbnWUYsurYAL1pFoUU1X_gCtfloyaXICHta57w84jeATjjP_KQCtE_UVG6e6S7QoK0svyF_bIms3qZGexZoFWUVcnW70ltep8n-iHjLrxlzUMWbsnOM1Cc7zqVBJuf9OpoyBOJyhDzRRHXVD5tFodQwGl0oKmek7xEJZqXKwEotieZp9jk78ekKfuzbBzy6pFCSwFuMOZbwzEnuNKA37h4BuhcQDLrDJBJLnm2GvRvhCJbHPjSe1Zbl0I5jMmddoocUhq2TSzR4RGiRemiQqjNPF8a7QK_HYKVbIRMhKRkw1ysVBe_FbyYcRQRxRajgstxxweY94gV6japRDSWBcvwLhxZdz4L-Me_8dHTsgmoJyoPJA9JbV89m7PyEb6kY_ns2bhN02yPrjrDV5-AHaQxwY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+fixed-parameter+tractability+of+the+mixed+domination+problem+for+graphs+with+bounded+tree-width&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=M.+Rajaati&rft.au=M.+R.+Hooshmandasl&rft.au=M.+J.+Dinneen&rft.au=A.+Shakiba&rft.date=2018-07-31&rft.pub=Discrete+Mathematics+%26+Theoretical+Computer+Science&rft.eissn=1365-8050&rft.volume=20+no.+2&rft.issue=Graph+Theory&rft_id=info:doi/10.23638%2FDMTCS-20-2-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f02665842e00453088b3972eb8c81664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon