A Unified Model for Estimation of Reference Evapotranspiration Using an Assembly of Ensemble Learners Coupled with Swarm Intelligence Optimizers

Several machine learning models and their ensembles have been suggested for reference evapotranspiration (ET0) modeling at different climatic regions. Researchers reported that optimizing model hyperparameters using an intelligent algorithm significantly improves the performance of such models. Howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Research Journal of Multidisciplinary Technovation S. 1 - 26
Hauptverfasser: Banerjee, Gouravmoy, Sarkar, Uditendu, Ghosh, Indrajit
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 30.11.2025
ISSN:2582-1040, 2582-1040
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Several machine learning models and their ensembles have been suggested for reference evapotranspiration (ET0) modeling at different climatic regions. Researchers reported that optimizing model hyperparameters using an intelligent algorithm significantly improves the performance of such models. However, ensemble models hybridized with hyperparameter optimizers have hardly been applied for the precise estimation of ET0 worldwide. The current research is devoted to designing sixteen hybrid versions of four ensemble models, alternatively coupled with four popular swarm intelligence optimization algorithms and finding the best-fit model against different input combinations of available climatic parameters for the groundwater-stressed region of North Bengal, India. The performances of four ensemble models and their sixteen hybrid versions were compared in terms of four well-recognized statistical metrics: the coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), root mean squared error (RMSE), and mean absolute error (MAE). Experimental results depicted that in nearly 92% of cases, the hybrid versions outperformed the primary ensemble models, irrespective of the available climatic parameters. In most cases, the ensemble models hybridized with the whale optimization algorithm (WOA) produced the highest estimation accuracy, followed by the sailfish optimizer (SFO). Solar radiation was also found to be the most significant climatic parameter for estimating ET0 in this region.
AbstractList Several machine learning models and their ensembles have been suggested for reference evapotranspiration (ET0) modeling at different climatic regions. Researchers reported that optimizing model hyperparameters using an intelligent algorithm significantly improves the performance of such models. However, ensemble models hybridized with hyperparameter optimizers have hardly been applied for the precise estimation of ET0 worldwide. The current research is devoted to designing sixteen hybrid versions of four ensemble models, alternatively coupled with four popular swarm intelligence optimization algorithms and finding the best-fit model against different input combinations of available climatic parameters for the groundwater-stressed region of North Bengal, India. The performances of four ensemble models and their sixteen hybrid versions were compared in terms of four well-recognized statistical metrics: the coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), root mean squared error (RMSE), and mean absolute error (MAE). Experimental results depicted that in nearly 92% of cases, the hybrid versions outperformed the primary ensemble models, irrespective of the available climatic parameters. In most cases, the ensemble models hybridized with the whale optimization algorithm (WOA) produced the highest estimation accuracy, followed by the sailfish optimizer (SFO). Solar radiation was also found to be the most significant climatic parameter for estimating ET0 in this region.
Author Sarkar, Uditendu
Banerjee, Gouravmoy
Ghosh, Indrajit
Author_xml – sequence: 1
  givenname: Gouravmoy
  surname: Banerjee
  fullname: Banerjee, Gouravmoy
– sequence: 2
  givenname: Uditendu
  surname: Sarkar
  fullname: Sarkar, Uditendu
– sequence: 3
  givenname: Indrajit
  orcidid: 0000-0001-9264-6076
  surname: Ghosh
  fullname: Ghosh, Indrajit
BookMark eNpNUNFKwzAUDaLgnHvxC_IsVJMmWdfHMaoOJgN1zyVN752RNilJdcyv8JOtm4hP93DPuedwzwU5dd4BIVec3Sgp8vTWhre2T9WUn5BRqmZpwplkp__wOZnEaCumxIwxKfmIfM3pxlm0UNNHX0ND0QdaxN62urfeUY_0CRACOAO0-NCd74N2sbPhyG-idVuqHZ3HCG3V7H8uCnfAQFegg4MQ6cK_d82QsbP9K33e6dDSpeuhaez24LzuhkT7OUgvyRnqJsLkd47J5q54WTwkq_X9cjFfJYZLwRPguakRM1UrqDCDKtc5MgCO0nBlcFjqTIsZCA2GC1WlKSozzfIKc1OhFGNyffQ1wccYAMsuDE-HfclZeaiz_KtTfAPG52_A
Cites_doi 10.1016/j.agwat.2018.06.018
10.1016/j.compag.2017.01.027
10.13031/2013.7049
10.1155/2013/281523
10.1088/1742-6596/2224/1/012006
10.1109/ACCESS.2020.2971354
10.1016/j.jhydrol.2019.123958
10.1029/2020WR027562
10.54386/jam.v26i1.2462
10.1145/3219819.3220058
10.1007/s13201-023-01895-5
10.1016/j.agwat.2017.08.003
10.1016/j.inpa.2020.02.003
10.3390/agronomy14050939
10.1016/j.advengsoft.2013.12.007
10.1016/j.jhydrol.2016.11.059
10.1016/j.agrformet.2018.08.019
10.1007/s11600-020-00509-x
10.1109/4235.585893
10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
10.1016/j.advengsoft.2016.01.008
10.1214/aos/1013203451
10.1007/s00704-019-03007-3
10.1007/s00521-020-04800-2
10.1080/20964471.2024.2423431
10.1016/j.scitotenv.2019.135653
10.1016/j.agwat.2024.108779
10.1080/19942060.2019.1645045
10.1061/(ASCE)HE.1943-5584.0000366
10.2166/nh.2019.060
10.1007/978-1-4842-3564-5_12
10.1061/(ASCE)0733-9437(2003)129:5(336)
10.1016/j.rser.2022.112364
10.3390/agronomy10010101
10.3934/geosci.2021016
10.1016/j.jhydrol.2019.03.028
10.1371/journal.pone.0235324
10.1016/j.advengsoft.2017.07.002
10.1016/j.jhydrol.2020.125087
10.1016/j.compag.2020.105358
10.54386/jam.v18i2.958
10.1145/2939672.2939785
10.1016/j.compag.2019.104937
10.1007/s00521-021-06421-9
10.1134/S2079096120040150
10.15244/pjoes/136348
10.36253/ijam-1373
10.32604/cmes.2020.011004
10.1016/j.engappai.2019.01.001
10.1155/2019/9575782
10.1016/j.agrformet.2014.10.008
10.1007/s11356-024-33987-3
10.1016/j.scs.2020.102275
10.1002/widm.1301
10.1007/s00704-019-02852-6
10.1061/(ASCE)IR.1943-4774.0000664
10.1109/ACCESS.2020.2999540
10.1080/02626667.2019.1601727
10.1016/j.compag.2015.04.012
10.1007/s00704-023-04760-2
10.1016/j.jhydrol.2021.126538
10.1117/1.JRS.14.038504
10.1002/joc.5064
10.3390/w12030643
10.1016/j.compag.2010.01.001
10.1016/j.asoc.2021.107478
10.1109/ACCESS.2020.2987689
10.1088/1755-1315/861/7/072039
10.3390/w14132027
10.1016/j.agwat.2020.106594
10.13031/2013.26773
10.1007/s41101-020-00087-5
10.54386/jam.v22i2.158
10.1007/s12517-020-06293-8
10.1007/s13201-024-02308-x
10.1007/s12559-020-09730-8
10.1016/j.ecolind.2024.112203
10.1002/pa.2031
10.1038/s41598-022-04923-7
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.54392/irjmt2561
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2582-1040
EndPage 26
ExternalDocumentID 10_54392_irjmt2561
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
ID FETCH-LOGICAL-c1431-e19cdff75d5ebf7eb9a9f0ee1f4c15cfebfa7a38e3aec135b22f5c679bf9cbf43
ISSN 2582-1040
IngestDate Sat Oct 25 05:28:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1431-e19cdff75d5ebf7eb9a9f0ee1f4c15cfebfa7a38e3aec135b22f5c679bf9cbf43
ORCID 0000-0001-9264-6076
OpenAccessLink https://journals.asianresassoc.org/index.php/irjmt/article/download/3009/1146
PageCount 26
ParticipantIDs crossref_primary_10_54392_irjmt2561
PublicationCentury 2000
PublicationDate 2025-11-30
PublicationDateYYYYMMDD 2025-11-30
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-30
  day: 30
PublicationDecade 2020
PublicationTitle International Research Journal of Multidisciplinary Technovation
PublicationYear 2025
References 33295
33372
33296
33373
33370
33371
33336
33337
33334
33378
33335
33379
33299
33332
33376
33333
33377
33297
33330
33374
33298
33331
33375
33338
33339
33361
33362
33360
33325
33369
33326
33323
33367
33324
33368
33321
33365
33322
33366
33363
33320
33364
33329
33327
33328
33350
33351
33314
33358
33315
33359
33312
33356
33313
33357
33310
33354
33311
33355
33352
33353
33318
33319
33316
33317
33340
33303
33347
33304
33348
33301
33345
33302
33346
33343
33300
33344
33341
33342
33309
33307
33308
33305
33349
33306
References_xml – ident: 33356
  doi: 10.1016/j.agwat.2018.06.018
– ident: 33307
  doi: 10.1016/j.compag.2017.01.027
– ident: 33317
  doi: 10.13031/2013.7049
– ident: 33336
  doi: 10.1155/2013/281523
– ident: 33324
  doi: 10.1088/1742-6596/2224/1/012006
– ident: 33302
– ident: 33371
  doi: 10.1109/ACCESS.2020.2971354
– ident: 33335
  doi: 10.1016/j.jhydrol.2019.123958
– ident: 33377
  doi: 10.1029/2020WR027562
– ident: 33338
  doi: 10.54386/jam.v26i1.2462
– ident: 33344
  doi: 10.1145/3219819.3220058
– ident: 33354
  doi: 10.1007/s13201-023-01895-5
– ident: 33306
  doi: 10.1016/j.agwat.2017.08.003
– ident: 33330
  doi: 10.1016/j.inpa.2020.02.003
– ident: 33340
  doi: 10.3390/agronomy14050939
– ident: 33348
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 33313
  doi: 10.1016/j.jhydrol.2016.11.059
– ident: 33328
  doi: 10.1016/j.agrformet.2018.08.019
– ident: 33363
  doi: 10.1007/s11600-020-00509-x
– ident: 33361
  doi: 10.1109/4235.585893
– ident: 33364
– ident: 33300
  doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
– ident: 33351
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 33366
  doi: 10.1214/aos/1013203451
– ident: 33368
– ident: 33323
  doi: 10.1007/s00704-019-03007-3
– ident: 33319
  doi: 10.1007/s00521-020-04800-2
– ident: 33339
  doi: 10.1080/20964471.2024.2423431
– ident: 33325
  doi: 10.1016/j.scitotenv.2019.135653
– ident: 33342
  doi: 10.1016/j.agwat.2024.108779
– ident: 33309
  doi: 10.1080/19942060.2019.1645045
– ident: 33310
  doi: 10.1061/(ASCE)HE.1943-5584.0000366
– ident: 33327
  doi: 10.2166/nh.2019.060
– ident: 33370
  doi: 10.1007/978-1-4842-3564-5_12
– ident: 33301
  doi: 10.1061/(ASCE)0733-9437(2003)129:5(336)
– ident: 33375
  doi: 10.1016/j.rser.2022.112364
– ident: 33316
  doi: 10.3390/agronomy10010101
– ident: 33326
  doi: 10.3934/geosci.2021016
– ident: 33333
  doi: 10.1016/j.jhydrol.2019.03.028
– ident: 33297
  doi: 10.1371/journal.pone.0235324
– ident: 33350
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: 33343
  doi: 10.1016/j.jhydrol.2020.125087
– ident: 33329
  doi: 10.1016/j.compag.2020.105358
– ident: 33318
  doi: 10.54386/jam.v18i2.958
– ident: 33367
  doi: 10.1145/2939672.2939785
– ident: 33331
  doi: 10.1016/j.compag.2019.104937
– ident: 33337
  doi: 10.1007/s00521-021-06421-9
– ident: 33298
  doi: 10.1134/S2079096120040150
– ident: 33315
  doi: 10.15244/pjoes/136348
– ident: 33353
  doi: 10.36253/ijam-1373
– ident: 33379
  doi: 10.32604/cmes.2020.011004
– ident: 33349
  doi: 10.1016/j.engappai.2019.01.001
– ident: 33359
  doi: 10.1155/2019/9575782
– ident: 33296
  doi: 10.1016/j.agrformet.2014.10.008
– ident: 33355
  doi: 10.1007/s11356-024-33987-3
– ident: 33346
  doi: 10.1016/j.scs.2020.102275
– ident: 33345
  doi: 10.1002/widm.1301
– ident: 33332
  doi: 10.1007/s00704-019-02852-6
– ident: 33303
– ident: 33308
  doi: 10.1061/(ASCE)IR.1943-4774.0000664
– ident: 33378
  doi: 10.1109/ACCESS.2020.2999540
– ident: 33334
  doi: 10.1080/02626667.2019.1601727
– ident: 33295
  doi: 10.1016/j.compag.2015.04.012
– ident: 33357
  doi: 10.1007/s00704-023-04760-2
– ident: 33376
  doi: 10.1016/j.jhydrol.2021.126538
– ident: 33321
  doi: 10.1117/1.JRS.14.038504
– ident: 33312
  doi: 10.1002/joc.5064
– ident: 33322
  doi: 10.3390/w12030643
– ident: 33314
  doi: 10.1016/j.compag.2010.01.001
– ident: 33373
  doi: 10.1016/j.asoc.2021.107478
– ident: 33352
  doi: 10.1109/ACCESS.2020.2987689
– ident: 33372
  doi: 10.1088/1755-1315/861/7/072039
– ident: 33320
  doi: 10.3390/w14132027
– ident: 33360
  doi: 10.1016/j.agwat.2020.106594
– ident: 33299
  doi: 10.13031/2013.26773
– ident: 33304
  doi: 10.1007/s41101-020-00087-5
– ident: 33305
  doi: 10.54386/jam.v22i2.158
– ident: 33311
  doi: 10.1007/s12517-020-06293-8
– ident: 33358
  doi: 10.1007/s13201-024-02308-x
– ident: 33347
  doi: 10.1007/s12559-020-09730-8
– ident: 33341
  doi: 10.1016/j.ecolind.2024.112203
– ident: 33362
  doi: 10.1002/pa.2031
– ident: 33365
– ident: 33369
– ident: 33374
  doi: 10.1038/s41598-022-04923-7
SSID ssib053800441
ssib044741817
Score 1.9302584
Snippet Several machine learning models and their ensembles have been suggested for reference evapotranspiration (ET0) modeling at different climatic regions....
SourceID crossref
SourceType Index Database
StartPage 1
Title A Unified Model for Estimation of Reference Evapotranspiration Using an Assembly of Ensemble Learners Coupled with Swarm Intelligence Optimizers
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2582-1040
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044741817
  issn: 2582-1040
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6FwoELAgHiXyvBrbLI2t44ewxVgAMUpLaot2h_VaexHblOqDjwDLwU78Xsrtd2Wg7lwMWyRpmVlfk88-3szBihN0RmDJjyJIoZSaJUJSLiCZNRnEwM10QR4wbPf_uUHR5OT0_Z19Hod-iF2a6yspxeXrL1fzU1yMDYtnX2H8zdLQoCuAejwxXMDtcbGX5meaSxzNJ-58y1J-7P4UUuOnLYD5cFHr2uGjffPG-h4GsI4K23x8GFWLkT-Hnp7rUfx2p7fg-qzXoVStePvvO6aDtS2umeX8AVFfmPtr4-0N_d_GOo-tsfsGLXELzTKuyT_9udioF3HB5i6WuIPoAy3xZVdzZwxOtzXzZ-onKb4t90RUZn1cWZ94qq5su8GeY8YhpmLQbXGFPYF8BG0ov0X2TeHZNBXPeN-VcjBgVCZkfQ5vWyaID-kT4uhlqAK-GyK2KE7ZPTXnS6t9DtOKPMOtfPP-fBraWpnRDU7yIhxNhjdJsK6J7ZD851y73tlhtQpQHnOb6P7rVmwTMPsgdopMuH6NcMtwDDDmAYAIZ7gOHK4A5g-DrAsAMY5iUOALMaAWA4AAy3AMMWYNgBDA8BhnuAPUIn7-fHBx-j9rsekQR2TiJNmFTGZFRRLUymBePMjLUmJpWESgNCnvFkqhOuJUmoiGND5SRjwjApTJo8RntlVeonCFMVg5OJYz5VaWrMWAhKrJ5UTCg6lk_R6_AXLtZ-fMviut2e3ehXz9HdHosv0F5Tb_RLdEdum_yifuVM_geteJyT
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unified+Model+for+Estimation+of+Reference+Evapotranspiration+Using+an+Assembly+of+Ensemble+Learners+Coupled+with+Swarm+Intelligence+Optimizers&rft.jtitle=International+Research+Journal+of+Multidisciplinary+Technovation&rft.au=Banerjee%2C+Gouravmoy&rft.au=Sarkar%2C+Uditendu&rft.au=Ghosh%2C+Indrajit&rft.date=2025-11-30&rft.issn=2582-1040&rft.eissn=2582-1040&rft.spage=1&rft.epage=26&rft_id=info:doi/10.54392%2Firjmt2561&rft.externalDBID=n%2Fa&rft.externalDocID=10_54392_irjmt2561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2582-1040&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2582-1040&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2582-1040&client=summon