Investigations into Hermite-Hadamard-Fejér Inequalities within the Realm of Trigonometric Convexity

This study is predicated on the exploration of lemmas pertaining to the Hermite-Hadamard-Fejér type integral inequality, focusing on both trapezoidal and midpoint inequalities. It delves into the realm of trigonometrically convex functions and is structured around the foundational lemmas that govern...

Full description

Saved in:
Bibliographic Details
Published in:Communications in advanced mathematical sciences (Online) Vol. 8; no. 1; pp. 36 - 48
Main Authors: Turhan, Sercan, Güngör, Ercihan, İşcan, İmdat
Format: Journal Article
Language:English
Published: Emrah Evren KARA 27.03.2025
Subjects:
ISSN:2651-4001, 2651-4001
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study is predicated on the exploration of lemmas pertaining to the Hermite-Hadamard-Fejér type integral inequality, focusing on both trapezoidal and midpoint inequalities. It delves into the realm of trigonometrically convex functions and is structured around the foundational lemmas that govern these inequalities. Through rigorous analysis, the research has successfully derived novel theorems and garnered insightful results that enhance the understanding of trigonometric convexity. Further, the study has undertaken the application of these theorems to exemplify trigonometrically convex functions, thereby providing practical instances that underline the theoretical developments. These applications not only serve to demonstrate the utility of the newly formulated results but also contribute to the broader field of convex analysis by introducing innovative perspectives on integral inequalities. The synthesis of theory and application encapsulated in this research marks a significant stride in the advancement of mathematical inequalities and their relevance to the study of convex functions.
AbstractList This study is predicated on the exploration of lemmas pertaining to the Hermite-Hadamard-Fejér type integral inequality, focusing on both trapezoidal and midpoint inequalities. It delves into the realm of trigonometrically convex functions and is structured around the foundational lemmas that govern these inequalities. Through rigorous analysis, the research has successfully derived novel theorems and garnered insightful results that enhance the understanding of trigonometric convexity. Further, the study has undertaken the application of these theorems to exemplify trigonometrically convex functions, thereby providing practical instances that underline the theoretical developments. These applications not only serve to demonstrate the utility of the newly formulated results but also contribute to the broader field of convex analysis by introducing innovative perspectives on integral inequalities. The synthesis of theory and application encapsulated in this research marks a significant stride in the advancement of mathematical inequalities and their relevance to the study of convex functions.
Author Turhan, Sercan
İşcan, İmdat
Güngör, Ercihan
Author_xml – sequence: 1
  givenname: Sercan
  orcidid: 0000-0002-4392-2182
  surname: Turhan
  fullname: Turhan, Sercan
– sequence: 2
  givenname: Ercihan
  orcidid: 0009-0001-1273-5229
  surname: Güngör
  fullname: Güngör, Ercihan
– sequence: 3
  givenname: İmdat
  orcidid: 0000-0001-6749-0591
  surname: İşcan
  fullname: İşcan, İmdat
BookMark eNpNkMtOwzAQRS1UJErpkr1_IMWOncReoorSSJWQUFlHEz9aV00Mtnn0k_gOfoxQKoRmcUd3cWZ0LtGo971B6JqSGWOc8RsFXZzRklW5oGdonJcFzTghdPRvv0DTGHeEEMZIJUg5Rrru30xMbgPJ-T5i1yePlyZ0LplsCRo6CDpbmN3XZ8B1b15eYe-SMxG_u7R1PU5bgx8N7DvsLV4Ht_G970wKTuG5H9gfLh2u0LmFfTTTU07Q0-JuPV9mq4f7en67yhTljGZalkWrq5Iry8EqalpaWEpYRau2aNuhbkFKK0C3quBCSqNt1UogsrJKCWATVP9ytYdd8xzc8Pyh8eCaY-HDpoGQnNqbRnBaiNzIXPHhmJJAhymkZUyLXKhyYGW_LBV8jMHYPx4lzdF482O8ORln3_IHeRk
Cites_doi 10.14744/sigma.2021.00072
10.2298/FIL2407323B
10.1007/s13324-023-00846-2
10.1016/j.camwa.2009.07.073
10.1016/j.jmaa.2006.02.086
10.2298/FIL2405807C
10.1186/s13660-023-02996-0
10.55730/1300-0098.3371
10.17776/csj.749571
10.16984/saufenbilder.711507
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.33434/cams.1637281
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2651-4001
EndPage 48
ExternalDocumentID oai_doaj_org_article_841582e92c4f4ac9a1a1a59f33d828c6
10_33434_cams_1637281
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
EN8
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c1431-d965bd764cf4afc1eb15f103717b5bb4cfba99f8adbc54899edf7b9a097fcc8a3
IEDL.DBID DOA
ISSN 2651-4001
IngestDate Fri Oct 03 12:53:39 EDT 2025
Sat Nov 29 08:06:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1431-d965bd764cf4afc1eb15f103717b5bb4cfba99f8adbc54899edf7b9a097fcc8a3
ORCID 0000-0002-4392-2182
0009-0001-1273-5229
0000-0001-6749-0591
OpenAccessLink https://doaj.org/article/841582e92c4f4ac9a1a1a59f33d828c6
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_841582e92c4f4ac9a1a1a59f33d828c6
crossref_primary_10_33434_cams_1637281
PublicationCentury 2000
PublicationDate 2025-03-27
PublicationDateYYYYMMDD 2025-03-27
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-27
  day: 27
PublicationDecade 2020
PublicationTitle Communications in advanced mathematical sciences (Online)
PublicationYear 2025
Publisher Emrah Evren KARA
Publisher_xml – name: Emrah Evren KARA
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref16
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.14744/sigma.2021.00072
– ident: ref6
– ident: ref7
  doi: 10.2298/FIL2407323B
– ident: ref12
  doi: 10.1007/s13324-023-00846-2
– ident: ref2
  doi: 10.1016/j.camwa.2009.07.073
– ident: ref1
  doi: 10.1016/j.jmaa.2006.02.086
– ident: ref9
  doi: 10.2298/FIL2405807C
– ident: ref11
  doi: 10.1186/s13660-023-02996-0
– ident: ref8
– ident: ref13
  doi: 10.55730/1300-0098.3371
– ident: ref16
– ident: ref5
  doi: 10.17776/csj.749571
– ident: ref10
– ident: ref4
  doi: 10.16984/saufenbilder.711507
– ident: ref15
– ident: ref14
SSID ssj0003307806
Score 2.2868574
Snippet This study is predicated on the exploration of lemmas pertaining to the Hermite-Hadamard-Fejér type integral inequality, focusing on both trapezoidal and...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 36
SubjectTerms h$-convex functions
hermite-hadamard-fejer type inequality
trigonometrically convex function
Title Investigations into Hermite-Hadamard-Fejér Inequalities within the Realm of Trigonometric Convexity
URI https://doaj.org/article/841582e92c4f4ac9a1a1a59f33d828c6
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2651-4001
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003307806
  issn: 2651-4001
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2651-4001
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003307806
  issn: 2651-4001
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB1EXOhCfGJ9MQtxNzaTSTIzSy0tFWwRqdJdmCdUaCptFVf-j9_hj3kniSWu3EggkCGEcOZxz0nunIvQhXUmSWOjiaeRJwmPUqKESWHiCeGBwrKs_IP_dMeHQzEey_tGqa-QE1bZA1fAtQVEGBE7GZvEJ8pIReFIpWfMglgwpdk2sJ6GmAprMKh0LqKsMtVkLGFJ26jp4grYB48F_RWEGl79ZVDp7aDtmg3i6-otdtGaK_bQ1mBlpbrYR7bhhAEjBE-K5Qz3QwrL0hFYN9Q0pL323PPX5xzfFq7aJQn6F4dPrJMCw7PwA9DBKZ55PAIxHrYxhDpaBndCyvk78PAD9Njrjjp9UpdGIAYIDiVWZqm2PEsMgOINhRU39WHLH-U61RqatZLSC2W1AU0ipbOea6kiyb0xQrFDtF7MCneEsLQykg4mrgfuBBdKedCMiklqJAR42kKXP1jlL5UDRg7KoQQ1D6DmNagtdBOQXN0UjKvLBujOvO7O_K_uPP6Ph5ygzTiU6Y0YifkpWl_OX90Z2jBvy8lifl6OFDgPPrrffJrHNg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigations+into+Hermite-Hadamard-Fej%C3%A9r+Inequalities+within+the+Realm+of+Trigonometric+Convexity&rft.jtitle=Communications+in+advanced+mathematical+sciences+%28Online%29&rft.au=Ercihan+G%C3%BCng%C3%B6r&rft.au=Sercan+Turhan&rft.au=%C4%B0mdat+%C4%B0%C5%9Fcan&rft.date=2025-03-27&rft.pub=Emrah+Evren+KARA&rft.eissn=2651-4001&rft.volume=8&rft.issue=1&rft.spage=36&rft.epage=48&rft_id=info:doi/10.33434%2Fcams.1637281&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_841582e92c4f4ac9a1a1a59f33d828c6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2651-4001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2651-4001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2651-4001&client=summon