The augmented Lagrangian method with full Jacobian decomposition and logarithmic-quadratic proximal regularization for multiple-block separable convex programming
We consider a separable convex minimization model whose variables are coupled by linear constraints and they are subject to the positive orthant constraints, and its objective function is in form of m functions without coupled variables. It is well recognized that when the augmented Lagrangian metho...
Gespeichert in:
| Veröffentlicht in: | SMAI Journal of Computational Mathematics Jg. 4; S. 81 - 120 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
27.03.2018
|
| ISSN: | 2426-8399, 2426-8399 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We consider a separable convex minimization model whose variables are coupled by linear constraints and they are subject to the positive orthant constraints, and its objective function is in form of m functions without coupled variables. It is well recognized that when the augmented Lagrangian method (ALM) is applied to solve some concrete applications, the resulting subproblem at each iteration should be decomposed to generate solvable subproblems. When the Gauss-Seidel decomposition is implemented, this idea has inspired the alternating direction method of multiplier (for m = 2 ) and its variants (for m ≥ 3 ). When the Jacobian decomposition is considered, it has been shown that the ALM with Jacobian decomposition in its subproblem is not necessarily convergent even when m = 2 and it was suggested to regularize the decomposed subproblems with quadratic proximal terms to ensure the convergence. In this paper, we focus on the multiple-block case with m ≥ 3 . We consider implementing the full Jacobian decomposition to ALM’s subproblems and using the logarithmic-quadratic proximal (LQP) terms to regularize the decomposed subproblems. The resulting subproblems are all unconstrained minimization problems because the positive orthant constraints are all inactive; and they are fully eligible for parallel computation. Accordingly, the ALM with full Jacobian decomposition and LQP regularization is proposed. We also consider its inexact version which allows the subproblems to be solved inexactly. For both the exact and inexact versions, we comprehensively discuss their convergence, including their global convergence, worst-case convergence rates measured by the iteration-complexity in both the ergodic and nonergodic senses, and linear convergence rates under additional assumptions. Some preliminary numerical results are reported to demonstrate the efficiency of the ALM with full Jacobian decomposition and LQP regularization. |
|---|---|
| AbstractList | We consider a separable convex minimization model whose variables are coupled by linear constraints and they are subject to the positive orthant constraints, and its objective function is in form of m functions without coupled variables. It is well recognized that when the augmented Lagrangian method (ALM) is applied to solve some concrete applications, the resulting subproblem at each iteration should be decomposed to generate solvable subproblems. When the Gauss-Seidel decomposition is implemented, this idea has inspired the alternating direction method of multiplier (for m = 2 ) and its variants (for m ≥ 3 ). When the Jacobian decomposition is considered, it has been shown that the ALM with Jacobian decomposition in its subproblem is not necessarily convergent even when m = 2 and it was suggested to regularize the decomposed subproblems with quadratic proximal terms to ensure the convergence. In this paper, we focus on the multiple-block case with m ≥ 3 . We consider implementing the full Jacobian decomposition to ALM’s subproblems and using the logarithmic-quadratic proximal (LQP) terms to regularize the decomposed subproblems. The resulting subproblems are all unconstrained minimization problems because the positive orthant constraints are all inactive; and they are fully eligible for parallel computation. Accordingly, the ALM with full Jacobian decomposition and LQP regularization is proposed. We also consider its inexact version which allows the subproblems to be solved inexactly. For both the exact and inexact versions, we comprehensively discuss their convergence, including their global convergence, worst-case convergence rates measured by the iteration-complexity in both the ergodic and nonergodic senses, and linear convergence rates under additional assumptions. Some preliminary numerical results are reported to demonstrate the efficiency of the ALM with full Jacobian decomposition and LQP regularization. |
| Author | Yuan, Xiaoming Li, Min |
| Author_xml | – sequence: 1 givenname: Min surname: Li fullname: Li, Min – sequence: 2 givenname: Xiaoming surname: Yuan fullname: Yuan, Xiaoming |
| BookMark | eNpNkMtOwzAURC0EEqV0xQ94j1Ic23ktUcVTldiUdXTj3KQufgQngcLn8KWkwILVXGlmrkbnjBw775CQi5gtk5zxq96CjnbKLgU7IjMueRrloiiO_92nZNH3O8YYL7jIUj4jX5stUhhbi27Amq6hDeBaDY5aHLa-pu962NJmNIY-gvLVwalRedv5Xg_aOwqupsa3EKag1Sp6HaEOMGhFu-D32oKhAdvRTIFP-Gk0PlA7mkF3BqPKePVCe-wgQGWQKu_ecH_oTkus1a49JycNmB4Xfzonz7c3m9V9tH66e1hdryMVS8GiFDHFGDKR5cATVfA4bpJc5rJKOCQy5zkmiQSpsM7iKuXQIEsrUYlC5LJOhZiTy9-_Kvi-D9iUXZjmh48yZuWBcHkgXE6ES8HEN9iadwQ |
| Cites_doi | 10.1007/BFb0120845 10.1137/1.9780898718874 10.1137/110822347 10.1137/110836936 10.1007/s10107-004-0568-x 10.1109/TPAMI.2011.282 10.1137/070703557 10.1007/978-1-4419-9569-8_10 10.1007/s00211-014-0673-6 10.1090/S0025-5718-2014-02829-9 10.1007/s10915-016-0318-2 10.1007/s10107-016-1034-2 10.1137/140999025 10.1287/moor.2014.0698 10.1007/s10107-014-0826-5 10.1007/s10107-012-0629-5 10.1007/s40305-015-0092-0 10.1137/110847639 10.2307/1907569 10.1016/j.ejor.2006.12.006 10.1137/100781894 10.1007/978-94-017-9054-3_4 10.1287/moor.1.2.97 10.1007/s10957-014-0682-8 10.1023/A:1008607511915 10.1007/s10957-013-0334-4 10.1007/s101070100241 10.1007/BF01584073 10.1007/BF01581204 10.1007/s10915-015-0060-1 10.1137/1.9781611970838 10.1137/130922793 10.1137/140971178 10.1561/2200000016 10.1007/978-3-662-12613-4 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.5802/smai-jcm.30 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2426-8399 |
| EndPage | 120 |
| ExternalDocumentID | 10_5802_smai_jcm_30 |
| GroupedDBID | AAYXX AEXTA ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E |
| ID | FETCH-LOGICAL-c1430-6ee6e1a7378a25c9211f58484b52a54828e554a4ced71b62afe06b3b39384d633 |
| ISSN | 2426-8399 |
| IngestDate | Sat Oct 25 05:01:02 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1430-6ee6e1a7378a25c9211f58484b52a54828e554a4ced71b62afe06b3b39384d633 |
| OpenAccessLink | https://doi.org/10.5802/smai-jcm.30 |
| PageCount | 40 |
| ParticipantIDs | crossref_primary_10_5802_smai_jcm_30 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-27 |
| PublicationDateYYYYMMDD | 2018-03-27 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-27 day: 27 |
| PublicationDecade | 2010 |
| PublicationTitle | SMAI Journal of Computational Mathematics |
| PublicationYear | 2018 |
| References | Eckstein, J. (key2025101714502716847_13) 2012 Lin, T. Y. (key2025101714502716847_32) 2015; 25 Li, M. (key2025101714502716847_31) 2015; 40 Auslender, A. (key2025101714502716847_3) 1999; 12 Glowinski, R. (key2025101714502716847_15) 1984 Nemirovsky, A. S. (key2025101714502716847_36) 1983 Chen, C. H. (key2025101714502716847_6) 2016; 155 He, B. S. (key2025101714502716847_22) 2015; 25 Li, M. (key2025101714502716847_29) 2013; 159 Melo, J. G. (key2025101714502716847_35) 2017 He, B. S. (key2025101714502716847_25) 2016; 66 Glowinski, R. (key2025101714502716847_16) 2014 Patriksson, M. (key2025101714502716847_39) 2008; 185 Boyd, S. (key2025101714502716847_5) 2010; 3 Gol’shtein, E. G. (key2025101714502716847_19) 1979; 10 He, B. S. (key2025101714502716847_23) 2014; 24 He, B. S. (key2025101714502716847_26) 2012; 50 Martinet, B. (key2025101714502716847_34) 1970; 4 Peng, Y. G. (key2025101714502716847_40) 2012; 34 Uzawa, H. (key2025101714502716847_45) 1960; 28 Auslender, A. (key2025101714502716847_2) 2005; 104 Deng, W. (key2025101714502716847_10) 2017; 71 Eaves, B. C. (key2025101714502716847_11) 1971; 1 Eckstein, J. (key2025101714502716847_12) 1992; 55 Combettes, P. L. (key2025101714502716847_8) 2011 He, B. S. (key2025101714502716847_27) 2015; 130 Tao, M. (key2025101714502716847_44) 2012; 22 Li, M. (key2025101714502716847_30) 2016; 26 Nesterov, Y. E. (key2025101714502716847_38) 2013; 140 Chen, C. H. (key2025101714502716847_7) 2015; 166 Lin, T. Y. (key2025101714502716847_33) 2015; 3 Rockafellar, R. T. (key2025101714502716847_42) 1976; 1 Nesterov, Y. E. (key2025101714502716847_37) 1983; 269 Facchinei, F. (key2025101714502716847_14) 2003 He, B. S. (key2025101714502716847_24) 2012; 22 Glowinski, R. (key2025101714502716847_18) 1989 Han, D. R. (key2025101714502716847_20) 2014; 83 Davis, D. (key2025101714502716847_9) 2017 Hansen, P. C. (key2025101714502716847_21) 2006 Tao, M. (key2025101714502716847_43) 2011; 21 Auslender, A. (key2025101714502716847_1) 2001; 91 Glowinski, R. (key2025101714502716847_17) 1975; R2 Powell, M. J. D. (key2025101714502716847_41) 1969 Bertsekas, D. P. (key2025101714502716847_4) 1982 Hong, M. (key2025101714502716847_28) 2017; 162 Yuan, X. M. (key2025101714502716847_46) 2011; 21 |
| References_xml | – volume: 10 start-page: 86 year: 1979 ident: key2025101714502716847_19 article-title: Modified Lagrangian in convex programming and their generalizations publication-title: Math. Program. Studies doi: 10.1007/BFb0120845 – volume: 269 start-page: 543 year: 1983 ident: key2025101714502716847_37 article-title: A method for unconstrained convex minimization problem with the rate of convergence O($1/{k^2}$) publication-title: Doklady AN SSSR – year: 2012 ident: key2025101714502716847_13 publication-title: Augmented Lagrangian and alternating direction methods for convex optimization: A tutorial and some illustrative computational results – year: 2003 ident: key2025101714502716847_14 publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems. Vol. I. Springer Series in Operations Research – year: 2006 ident: key2025101714502716847_21 publication-title: Deblurring Images: Matrices, Spectra, and Filtering doi: 10.1137/1.9780898718874 – volume: 22 start-page: 313 year: 2012 ident: key2025101714502716847_24 article-title: Alternating direction method with Gaussian back substitution for separable convex programming publication-title: SIAM J. Optim. doi: 10.1137/110822347 – volume: 50 start-page: 700 year: 2012 ident: key2025101714502716847_26 article-title: On the O($1/n$) convergence rate of Douglas-Rachford alternating direction method publication-title: SIAM J. Numer. Anal. doi: 10.1137/110836936 – volume: 104 start-page: 39 year: 2005 ident: key2025101714502716847_2 article-title: Interior projection-like methods for monotone variational inequalities publication-title: Math. Program. doi: 10.1007/s10107-004-0568-x – volume: 34 start-page: 2233 year: 2012 ident: key2025101714502716847_40 article-title: Robust alignment by sparse and low-rank decomposition for linearly correlated images publication-title: IEEE Tran. Pattern Anal. Mach. Intel. doi: 10.1109/TPAMI.2011.282 – volume: 21 start-page: 1309 year: 2011 ident: key2025101714502716847_46 article-title: An LQP-based decomposition method for solving a class of variational inequalities publication-title: SIAM J. Optim doi: 10.1137/070703557 – start-page: 185 year: 2011 ident: key2025101714502716847_8 article-title: Proximal splitting methods in signal processing publication-title: Fixed-Point Algorithms for Inverse Problems in Science and Engineering doi: 10.1007/978-1-4419-9569-8_10 – volume: 130 start-page: 567 year: 2015 ident: key2025101714502716847_27 article-title: On nonergodic convergence rate of Douglas-Rachford alternating direction method of multipliers publication-title: Numer. Math. doi: 10.1007/s00211-014-0673-6 – volume: 83 start-page: 2263 year: 2014 ident: key2025101714502716847_20 article-title: An augmented-Lagrangian-based parallel splitting method for separable convex programming with applications to image processing publication-title: Math. Comput. doi: 10.1090/S0025-5718-2014-02829-9 – volume: 4 start-page: 154 year: 1970 ident: key2025101714502716847_34 article-title: Regularization d’inequations variationelles par approximations successives publication-title: Revue Francaise d’Informatique et de Recherche Opérationelle – volume: 24 start-page: 1101 year: 2014 ident: key2025101714502716847_23 article-title: A strictly contractive Peaceman-Rachford splitting method for convex programming publication-title: SIAM J. Optim. – volume: 71 start-page: 712 year: 2017 ident: key2025101714502716847_10 article-title: Parallel multi-block ADMM with $o(1/k)$ convergence publication-title: J. Sci. Comput. doi: 10.1007/s10915-016-0318-2 – volume: 162 start-page: 165 year: 2017 ident: key2025101714502716847_28 article-title: On the linear convergence of the alternating direction method of multipliers publication-title: Math. Program. doi: 10.1007/s10107-016-1034-2 – year: 1983 ident: key2025101714502716847_36 publication-title: Problem Complexity and Method Efficiency in Optimization, Wiley-Interscience Series in Discrete Mathematics – year: 2017 ident: key2025101714502716847_35 publication-title: Iteration-complexity of a Jacobi-type non-Euclidean ADMM for multi-block linearly constrained nonconvex programs – volume: R2 start-page: 41 year: 1975 ident: key2025101714502716847_17 article-title: Approximation par éléments finis d’ordre un et résolution par pénalisation-dualité d’une classe de problèmes non linéaires publication-title: R.A.I.R.O. – volume: 26 start-page: 922 year: 2016 ident: key2025101714502716847_30 article-title: A majorized ADMM with indefinite proximal terms for linearly constrained convex composite optimization publication-title: SIAM J. Optim. doi: 10.1137/140999025 – volume: 40 start-page: 842 year: 2015 ident: key2025101714502716847_31 article-title: A strictly contractive Peaceman-Rachford splitting method with logarithmic-quadratic proximal regularization for convex programming publication-title: Math. Oper. Res. doi: 10.1287/moor.2014.0698 – volume: 155 start-page: 57 year: 2016 ident: key2025101714502716847_6 article-title: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent publication-title: Math. Program., Ser A doi: 10.1007/s10107-014-0826-5 – volume: 140 start-page: 125 year: 2013 ident: key2025101714502716847_38 article-title: Gradient methods for minimizing composite objective function publication-title: Math. Program., Ser. B doi: 10.1007/s10107-012-0629-5 – start-page: 115 year: 2017 ident: key2025101714502716847_9 article-title: Convergence rate analysis of several splitting schemes publication-title: Splitting Methods in Communication, Imaging, Science, and Engineering – volume: 3 start-page: 251 year: 2015 ident: key2025101714502716847_33 article-title: On the sublinear convergence rate of multi-block ADMM publication-title: J. Oper. Res. Soc. China doi: 10.1007/s40305-015-0092-0 – volume: 22 start-page: 1431 year: 2012 ident: key2025101714502716847_44 article-title: On the O$(1/t)$ convergence rate of alternating direction method with logarithmic-quadratic proximal regularization publication-title: SIAM J. Optim. doi: 10.1137/110847639 – volume: 28 start-page: 872 year: 1960 ident: key2025101714502716847_45 article-title: Market mechanisms and mathematical programming publication-title: Econometrica doi: 10.2307/1907569 – volume: 185 start-page: 1 year: 2008 ident: key2025101714502716847_39 article-title: A survey on the continuous nonlinear resource allocation problem publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2006.12.006 – volume: 21 start-page: 57 year: 2011 ident: key2025101714502716847_43 article-title: Recovering low-rank and sparse components of matrices from incomplete and noisy observations publication-title: SIAM J. Optim. doi: 10.1137/100781894 – start-page: 59 year: 2014 ident: key2025101714502716847_16 article-title: On alternating direction methods of multipliers: A historical perspective publication-title: Modeling, Simulation and Optimization for Science and Technology, Volume 34 of the series Computational Methods in Applied Sciences doi: 10.1007/978-94-017-9054-3_4 – volume: 1 start-page: 97 year: 1976 ident: key2025101714502716847_42 article-title: Augmented Lagrangians and applications of the proximal point algorithm in convex programming publication-title: Math. Oper. Res. doi: 10.1287/moor.1.2.97 – volume: 166 start-page: 906 year: 2015 ident: key2025101714502716847_7 article-title: Further study on the convergence rate of alternating direction method of multipliers with logarithmic-quadratic proximal regularization publication-title: J. Optim. Theory Appli. doi: 10.1007/s10957-014-0682-8 – volume: 12 start-page: 31 year: 1999 ident: key2025101714502716847_3 article-title: A logarithmic-quadratic proximal method for variational inequalities publication-title: Comput. Optim. Appl. doi: 10.1023/A:1008607511915 – volume: 159 start-page: 412 year: 2013 ident: key2025101714502716847_29 article-title: Inexact alternating direction method of multipliers with logarithmic-quadratic proximal regularization publication-title: J. Optim. Theory Appli. doi: 10.1007/s10957-013-0334-4 – volume: 91 start-page: 33 year: 2001 ident: key2025101714502716847_1 article-title: Entropic proximal decomposition methods for convex programs and variational inequalities publication-title: Math. Program. doi: 10.1007/s101070100241 – volume: 1 start-page: 68 year: 1971 ident: key2025101714502716847_11 article-title: On the basic theorem of complementarity publication-title: Math. Program. doi: 10.1007/BF01584073 – year: 1982 ident: key2025101714502716847_4 publication-title: Constrained Optimization and Lagrange Multiplier Methods – volume: 55 start-page: 293 year: 1992 ident: key2025101714502716847_12 article-title: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators publication-title: Math. Program. doi: 10.1007/BF01581204 – volume: 66 start-page: 1204 year: 2016 ident: key2025101714502716847_25 article-title: On the proximal Jacobian decomposition of ALM for multiple-block separable convex minimization problems and its relationship to ADMM publication-title: J. Sci. Comput. doi: 10.1007/s10915-015-0060-1 – year: 1989 ident: key2025101714502716847_18 publication-title: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics doi: 10.1137/1.9781611970838 – volume: 25 start-page: 2274 year: 2015 ident: key2025101714502716847_22 article-title: On full Jacobian decomposition of the augmented Lagrangian method for separable convex programming publication-title: SIAM J. Optim. doi: 10.1137/130922793 – volume: 25 start-page: 1478 year: 2015 ident: key2025101714502716847_32 article-title: On the global linear convergence of the ADMM with multiblock variables publication-title: SIAM J. Optim. doi: 10.1137/140971178 – volume: 3 start-page: 1 year: 2010 ident: key2025101714502716847_5 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Foundations and Trends in Machine Learning doi: 10.1561/2200000016 – start-page: 283 year: 1969 ident: key2025101714502716847_41 article-title: A method for nonlinear constraints in minimization problems publication-title: Optimization – year: 1984 ident: key2025101714502716847_15 publication-title: Numerical Methods for Nonlinear Variational Problems doi: 10.1007/978-3-662-12613-4 |
| SSID | ssj0002923762 |
| Score | 2.0217342 |
| Snippet | We consider a separable convex minimization model whose variables are coupled by linear constraints and they are subject to the positive orthant constraints,... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 81 |
| Title | The augmented Lagrangian method with full Jacobian decomposition and logarithmic-quadratic proximal regularization for multiple-block separable convex programming |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2426-8399 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002923762 issn: 2426-8399 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoELKgLEq8iH3iLDxkkc-1ghKkC7FRJFWk6R4zhLgKRlH9We-DEc-ZWdsZNsFvZQDlyiyIqTKPNlZjz-ZoaQ41xxI7SSzEQqYnGsQA-GQrNS6ciawgqtXcn8SXp2Jmcz9WE0-t3lwlx9T5tGbjbq8r-KGsZA2Jg6-w_i7m8KA3AOQocjiB2ONxa8Xs9dsc0imOg5WKM5_sa-WbSPvGLUPXgP2hBLjgeFRWZ5S99y2wmgEWERvfpSV4b9WOti4Qq7Iuelql0rAOxgv2hzOB1VsWMmshzM47dgabGoOKZlOV77piOC1Z2pbB3ij9OTd8HAK_ZdJroI5bQvKtu7_pPKs_17UH9e-xjurNIX_d3bOEboEvt8WQCv7tBXYOCueQVq94y1-joe6Fvf7qW13KFLq_vLKCTSFZld1rpiX039st0H2im9_YdJ7ImKsETC6RlOzmByFo1vkds8TRRq0OnPbTyPK-QX4aZV_9I-HRTnvxo8fOAADTyZ80Nyr_3Y9MRD5z4Z2eYB-QWwoT1s6BY21MOGImwowoZ2sKE7sKEAG7oXNrSDDd2FDQXY0F3Y0B421MOGDmDzkHw6fXP--i1r-3cwA174mAlrhQ11GqVS88QoHoYl-LsyzhOuYaXMpQVnVsfGFmmYC65LOxZ5lIPWkHEhougROWguGvuY0Cg2sgzjUvISt65LlXJhBRioUiUmT80Tctx91OzSl2nJ9sju6c0ue0bubhH6nBysFmt7RO6Yq1W1XLxwcr8GGgqX6Q |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+augmented+Lagrangian+method+with+full+Jacobian+decomposition+and+logarithmic-quadratic+proximal+regularization+for+multiple-block+separable+convex+programming&rft.jtitle=SMAI+Journal+of+Computational+Mathematics&rft.au=Li%2C+Min&rft.au=Yuan%2C+Xiaoming&rft.date=2018-03-27&rft.issn=2426-8399&rft.eissn=2426-8399&rft.volume=4&rft.spage=81&rft.epage=120&rft_id=info:doi/10.5802%2Fsmai-jcm.30&rft.externalDBID=n%2Fa&rft.externalDocID=10_5802_smai_jcm_30 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2426-8399&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2426-8399&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2426-8399&client=summon |