The augmented Lagrangian method with full Jacobian decomposition and logarithmic-quadratic proximal regularization for multiple-block separable convex programming

We consider a separable convex minimization model whose variables are coupled by linear constraints and they are subject to the positive orthant constraints, and its objective function is in form of m functions without coupled variables. It is well recognized that when the augmented Lagrangian metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SMAI Journal of Computational Mathematics Jg. 4; S. 81 - 120
Hauptverfasser: Li, Min, Yuan, Xiaoming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 27.03.2018
ISSN:2426-8399, 2426-8399
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We consider a separable convex minimization model whose variables are coupled by linear constraints and they are subject to the positive orthant constraints, and its objective function is in form of m functions without coupled variables. It is well recognized that when the augmented Lagrangian method (ALM) is applied to solve some concrete applications, the resulting subproblem at each iteration should be decomposed to generate solvable subproblems. When the Gauss-Seidel decomposition is implemented, this idea has inspired the alternating direction method of multiplier (for m = 2 ) and its variants (for m ≥ 3 ). When the Jacobian decomposition is considered, it has been shown that the ALM with Jacobian decomposition in its subproblem is not necessarily convergent even when m = 2 and it was suggested to regularize the decomposed subproblems with quadratic proximal terms to ensure the convergence. In this paper, we focus on the multiple-block case with m ≥ 3 . We consider implementing the full Jacobian decomposition to ALM’s subproblems and using the logarithmic-quadratic proximal (LQP) terms to regularize the decomposed subproblems. The resulting subproblems are all unconstrained minimization problems because the positive orthant constraints are all inactive; and they are fully eligible for parallel computation. Accordingly, the ALM with full Jacobian decomposition and LQP regularization is proposed. We also consider its inexact version which allows the subproblems to be solved inexactly. For both the exact and inexact versions, we comprehensively discuss their convergence, including their global convergence, worst-case convergence rates measured by the iteration-complexity in both the ergodic and nonergodic senses, and linear convergence rates under additional assumptions. Some preliminary numerical results are reported to demonstrate the efficiency of the ALM with full Jacobian decomposition and LQP regularization.
AbstractList We consider a separable convex minimization model whose variables are coupled by linear constraints and they are subject to the positive orthant constraints, and its objective function is in form of m functions without coupled variables. It is well recognized that when the augmented Lagrangian method (ALM) is applied to solve some concrete applications, the resulting subproblem at each iteration should be decomposed to generate solvable subproblems. When the Gauss-Seidel decomposition is implemented, this idea has inspired the alternating direction method of multiplier (for m = 2 ) and its variants (for m ≥ 3 ). When the Jacobian decomposition is considered, it has been shown that the ALM with Jacobian decomposition in its subproblem is not necessarily convergent even when m = 2 and it was suggested to regularize the decomposed subproblems with quadratic proximal terms to ensure the convergence. In this paper, we focus on the multiple-block case with m ≥ 3 . We consider implementing the full Jacobian decomposition to ALM’s subproblems and using the logarithmic-quadratic proximal (LQP) terms to regularize the decomposed subproblems. The resulting subproblems are all unconstrained minimization problems because the positive orthant constraints are all inactive; and they are fully eligible for parallel computation. Accordingly, the ALM with full Jacobian decomposition and LQP regularization is proposed. We also consider its inexact version which allows the subproblems to be solved inexactly. For both the exact and inexact versions, we comprehensively discuss their convergence, including their global convergence, worst-case convergence rates measured by the iteration-complexity in both the ergodic and nonergodic senses, and linear convergence rates under additional assumptions. Some preliminary numerical results are reported to demonstrate the efficiency of the ALM with full Jacobian decomposition and LQP regularization.
Author Yuan, Xiaoming
Li, Min
Author_xml – sequence: 1
  givenname: Min
  surname: Li
  fullname: Li, Min
– sequence: 2
  givenname: Xiaoming
  surname: Yuan
  fullname: Yuan, Xiaoming
BookMark eNpNkMtOwzAURC0EEqV0xQ94j1Ic23ktUcVTldiUdXTj3KQufgQngcLn8KWkwILVXGlmrkbnjBw775CQi5gtk5zxq96CjnbKLgU7IjMueRrloiiO_92nZNH3O8YYL7jIUj4jX5stUhhbi27Amq6hDeBaDY5aHLa-pu962NJmNIY-gvLVwalRedv5Xg_aOwqupsa3EKag1Sp6HaEOMGhFu-D32oKhAdvRTIFP-Gk0PlA7mkF3BqPKePVCe-wgQGWQKu_ecH_oTkus1a49JycNmB4Xfzonz7c3m9V9tH66e1hdryMVS8GiFDHFGDKR5cATVfA4bpJc5rJKOCQy5zkmiQSpsM7iKuXQIEsrUYlC5LJOhZiTy9-_Kvi-D9iUXZjmh48yZuWBcHkgXE6ES8HEN9iadwQ
Cites_doi 10.1007/BFb0120845
10.1137/1.9780898718874
10.1137/110822347
10.1137/110836936
10.1007/s10107-004-0568-x
10.1109/TPAMI.2011.282
10.1137/070703557
10.1007/978-1-4419-9569-8_10
10.1007/s00211-014-0673-6
10.1090/S0025-5718-2014-02829-9
10.1007/s10915-016-0318-2
10.1007/s10107-016-1034-2
10.1137/140999025
10.1287/moor.2014.0698
10.1007/s10107-014-0826-5
10.1007/s10107-012-0629-5
10.1007/s40305-015-0092-0
10.1137/110847639
10.2307/1907569
10.1016/j.ejor.2006.12.006
10.1137/100781894
10.1007/978-94-017-9054-3_4
10.1287/moor.1.2.97
10.1007/s10957-014-0682-8
10.1023/A:1008607511915
10.1007/s10957-013-0334-4
10.1007/s101070100241
10.1007/BF01584073
10.1007/BF01581204
10.1007/s10915-015-0060-1
10.1137/1.9781611970838
10.1137/130922793
10.1137/140971178
10.1561/2200000016
10.1007/978-3-662-12613-4
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.5802/smai-jcm.30
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2426-8399
EndPage 120
ExternalDocumentID 10_5802_smai_jcm_30
GroupedDBID AAYXX
AEXTA
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c1430-6ee6e1a7378a25c9211f58484b52a54828e554a4ced71b62afe06b3b39384d633
ISSN 2426-8399
IngestDate Sat Oct 25 05:01:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1430-6ee6e1a7378a25c9211f58484b52a54828e554a4ced71b62afe06b3b39384d633
OpenAccessLink https://doi.org/10.5802/smai-jcm.30
PageCount 40
ParticipantIDs crossref_primary_10_5802_smai_jcm_30
PublicationCentury 2000
PublicationDate 2018-03-27
PublicationDateYYYYMMDD 2018-03-27
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-27
  day: 27
PublicationDecade 2010
PublicationTitle SMAI Journal of Computational Mathematics
PublicationYear 2018
References Eckstein, J. (key2025101714502716847_13) 2012
Lin, T. Y. (key2025101714502716847_32) 2015; 25
Li, M. (key2025101714502716847_31) 2015; 40
Auslender, A. (key2025101714502716847_3) 1999; 12
Glowinski, R. (key2025101714502716847_15) 1984
Nemirovsky, A. S. (key2025101714502716847_36) 1983
Chen, C. H. (key2025101714502716847_6) 2016; 155
He, B. S. (key2025101714502716847_22) 2015; 25
Li, M. (key2025101714502716847_29) 2013; 159
Melo, J. G. (key2025101714502716847_35) 2017
He, B. S. (key2025101714502716847_25) 2016; 66
Glowinski, R. (key2025101714502716847_16) 2014
Patriksson, M. (key2025101714502716847_39) 2008; 185
Boyd, S. (key2025101714502716847_5) 2010; 3
Gol’shtein, E. G. (key2025101714502716847_19) 1979; 10
He, B. S. (key2025101714502716847_23) 2014; 24
He, B. S. (key2025101714502716847_26) 2012; 50
Martinet, B. (key2025101714502716847_34) 1970; 4
Peng, Y. G. (key2025101714502716847_40) 2012; 34
Uzawa, H. (key2025101714502716847_45) 1960; 28
Auslender, A. (key2025101714502716847_2) 2005; 104
Deng, W. (key2025101714502716847_10) 2017; 71
Eaves, B. C. (key2025101714502716847_11) 1971; 1
Eckstein, J. (key2025101714502716847_12) 1992; 55
Combettes, P. L. (key2025101714502716847_8) 2011
He, B. S. (key2025101714502716847_27) 2015; 130
Tao, M. (key2025101714502716847_44) 2012; 22
Li, M. (key2025101714502716847_30) 2016; 26
Nesterov, Y. E. (key2025101714502716847_38) 2013; 140
Chen, C. H. (key2025101714502716847_7) 2015; 166
Lin, T. Y. (key2025101714502716847_33) 2015; 3
Rockafellar, R. T. (key2025101714502716847_42) 1976; 1
Nesterov, Y. E. (key2025101714502716847_37) 1983; 269
Facchinei, F. (key2025101714502716847_14) 2003
He, B. S. (key2025101714502716847_24) 2012; 22
Glowinski, R. (key2025101714502716847_18) 1989
Han, D. R. (key2025101714502716847_20) 2014; 83
Davis, D. (key2025101714502716847_9) 2017
Hansen, P. C. (key2025101714502716847_21) 2006
Tao, M. (key2025101714502716847_43) 2011; 21
Auslender, A. (key2025101714502716847_1) 2001; 91
Glowinski, R. (key2025101714502716847_17) 1975; R2
Powell, M. J. D. (key2025101714502716847_41) 1969
Bertsekas, D. P. (key2025101714502716847_4) 1982
Hong, M. (key2025101714502716847_28) 2017; 162
Yuan, X. M. (key2025101714502716847_46) 2011; 21
References_xml – volume: 10
  start-page: 86
  year: 1979
  ident: key2025101714502716847_19
  article-title: Modified Lagrangian in convex programming and their generalizations
  publication-title: Math. Program. Studies
  doi: 10.1007/BFb0120845
– volume: 269
  start-page: 543
  year: 1983
  ident: key2025101714502716847_37
  article-title: A method for unconstrained convex minimization problem with the rate of convergence O($1/{k^2}$)
  publication-title: Doklady AN SSSR
– year: 2012
  ident: key2025101714502716847_13
  publication-title: Augmented Lagrangian and alternating direction methods for convex optimization: A tutorial and some illustrative computational results
– year: 2003
  ident: key2025101714502716847_14
  publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems. Vol. I. Springer Series in Operations Research
– year: 2006
  ident: key2025101714502716847_21
  publication-title: Deblurring Images: Matrices, Spectra, and Filtering
  doi: 10.1137/1.9780898718874
– volume: 22
  start-page: 313
  year: 2012
  ident: key2025101714502716847_24
  article-title: Alternating direction method with Gaussian back substitution for separable convex programming
  publication-title: SIAM J. Optim.
  doi: 10.1137/110822347
– volume: 50
  start-page: 700
  year: 2012
  ident: key2025101714502716847_26
  article-title: On the O($1/n$) convergence rate of Douglas-Rachford alternating direction method
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110836936
– volume: 104
  start-page: 39
  year: 2005
  ident: key2025101714502716847_2
  article-title: Interior projection-like methods for monotone variational inequalities
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0568-x
– volume: 34
  start-page: 2233
  year: 2012
  ident: key2025101714502716847_40
  article-title: Robust alignment by sparse and low-rank decomposition for linearly correlated images
  publication-title: IEEE Tran. Pattern Anal. Mach. Intel.
  doi: 10.1109/TPAMI.2011.282
– volume: 21
  start-page: 1309
  year: 2011
  ident: key2025101714502716847_46
  article-title: An LQP-based decomposition method for solving a class of variational inequalities
  publication-title: SIAM J. Optim
  doi: 10.1137/070703557
– start-page: 185
  year: 2011
  ident: key2025101714502716847_8
  article-title: Proximal splitting methods in signal processing
  publication-title: Fixed-Point Algorithms for Inverse Problems in Science and Engineering
  doi: 10.1007/978-1-4419-9569-8_10
– volume: 130
  start-page: 567
  year: 2015
  ident: key2025101714502716847_27
  article-title: On nonergodic convergence rate of Douglas-Rachford alternating direction method of multipliers
  publication-title: Numer. Math.
  doi: 10.1007/s00211-014-0673-6
– volume: 83
  start-page: 2263
  year: 2014
  ident: key2025101714502716847_20
  article-title: An augmented-Lagrangian-based parallel splitting method for separable convex programming with applications to image processing
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2014-02829-9
– volume: 4
  start-page: 154
  year: 1970
  ident: key2025101714502716847_34
  article-title: Regularization d’inequations variationelles par approximations successives
  publication-title: Revue Francaise d’Informatique et de Recherche Opérationelle
– volume: 24
  start-page: 1101
  year: 2014
  ident: key2025101714502716847_23
  article-title: A strictly contractive Peaceman-Rachford splitting method for convex programming
  publication-title: SIAM J. Optim.
– volume: 71
  start-page: 712
  year: 2017
  ident: key2025101714502716847_10
  article-title: Parallel multi-block ADMM with $o(1/k)$ convergence
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-016-0318-2
– volume: 162
  start-page: 165
  year: 2017
  ident: key2025101714502716847_28
  article-title: On the linear convergence of the alternating direction method of multipliers
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1034-2
– year: 1983
  ident: key2025101714502716847_36
  publication-title: Problem Complexity and Method Efficiency in Optimization, Wiley-Interscience Series in Discrete Mathematics
– year: 2017
  ident: key2025101714502716847_35
  publication-title: Iteration-complexity of a Jacobi-type non-Euclidean ADMM for multi-block linearly constrained nonconvex programs
– volume: R2
  start-page: 41
  year: 1975
  ident: key2025101714502716847_17
  article-title: Approximation par éléments finis d’ordre un et résolution par pénalisation-dualité d’une classe de problèmes non linéaires
  publication-title: R.A.I.R.O.
– volume: 26
  start-page: 922
  year: 2016
  ident: key2025101714502716847_30
  article-title: A majorized ADMM with indefinite proximal terms for linearly constrained convex composite optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/140999025
– volume: 40
  start-page: 842
  year: 2015
  ident: key2025101714502716847_31
  article-title: A strictly contractive Peaceman-Rachford splitting method with logarithmic-quadratic proximal regularization for convex programming
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2014.0698
– volume: 155
  start-page: 57
  year: 2016
  ident: key2025101714502716847_6
  article-title: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent
  publication-title: Math. Program., Ser A
  doi: 10.1007/s10107-014-0826-5
– volume: 140
  start-page: 125
  year: 2013
  ident: key2025101714502716847_38
  article-title: Gradient methods for minimizing composite objective function
  publication-title: Math. Program., Ser. B
  doi: 10.1007/s10107-012-0629-5
– start-page: 115
  year: 2017
  ident: key2025101714502716847_9
  article-title: Convergence rate analysis of several splitting schemes
  publication-title: Splitting Methods in Communication, Imaging, Science, and Engineering
– volume: 3
  start-page: 251
  year: 2015
  ident: key2025101714502716847_33
  article-title: On the sublinear convergence rate of multi-block ADMM
  publication-title: J. Oper. Res. Soc. China
  doi: 10.1007/s40305-015-0092-0
– volume: 22
  start-page: 1431
  year: 2012
  ident: key2025101714502716847_44
  article-title: On the O$(1/t)$ convergence rate of alternating direction method with logarithmic-quadratic proximal regularization
  publication-title: SIAM J. Optim.
  doi: 10.1137/110847639
– volume: 28
  start-page: 872
  year: 1960
  ident: key2025101714502716847_45
  article-title: Market mechanisms and mathematical programming
  publication-title: Econometrica
  doi: 10.2307/1907569
– volume: 185
  start-page: 1
  year: 2008
  ident: key2025101714502716847_39
  article-title: A survey on the continuous nonlinear resource allocation problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2006.12.006
– volume: 21
  start-page: 57
  year: 2011
  ident: key2025101714502716847_43
  article-title: Recovering low-rank and sparse components of matrices from incomplete and noisy observations
  publication-title: SIAM J. Optim.
  doi: 10.1137/100781894
– start-page: 59
  year: 2014
  ident: key2025101714502716847_16
  article-title: On alternating direction methods of multipliers: A historical perspective
  publication-title: Modeling, Simulation and Optimization for Science and Technology, Volume 34 of the series Computational Methods in Applied Sciences
  doi: 10.1007/978-94-017-9054-3_4
– volume: 1
  start-page: 97
  year: 1976
  ident: key2025101714502716847_42
  article-title: Augmented Lagrangians and applications of the proximal point algorithm in convex programming
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1.2.97
– volume: 166
  start-page: 906
  year: 2015
  ident: key2025101714502716847_7
  article-title: Further study on the convergence rate of alternating direction method of multipliers with logarithmic-quadratic proximal regularization
  publication-title: J. Optim. Theory Appli.
  doi: 10.1007/s10957-014-0682-8
– volume: 12
  start-page: 31
  year: 1999
  ident: key2025101714502716847_3
  article-title: A logarithmic-quadratic proximal method for variational inequalities
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1008607511915
– volume: 159
  start-page: 412
  year: 2013
  ident: key2025101714502716847_29
  article-title: Inexact alternating direction method of multipliers with logarithmic-quadratic proximal regularization
  publication-title: J. Optim. Theory Appli.
  doi: 10.1007/s10957-013-0334-4
– volume: 91
  start-page: 33
  year: 2001
  ident: key2025101714502716847_1
  article-title: Entropic proximal decomposition methods for convex programs and variational inequalities
  publication-title: Math. Program.
  doi: 10.1007/s101070100241
– volume: 1
  start-page: 68
  year: 1971
  ident: key2025101714502716847_11
  article-title: On the basic theorem of complementarity
  publication-title: Math. Program.
  doi: 10.1007/BF01584073
– year: 1982
  ident: key2025101714502716847_4
  publication-title: Constrained Optimization and Lagrange Multiplier Methods
– volume: 55
  start-page: 293
  year: 1992
  ident: key2025101714502716847_12
  article-title: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators
  publication-title: Math. Program.
  doi: 10.1007/BF01581204
– volume: 66
  start-page: 1204
  year: 2016
  ident: key2025101714502716847_25
  article-title: On the proximal Jacobian decomposition of ALM for multiple-block separable convex minimization problems and its relationship to ADMM
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-015-0060-1
– year: 1989
  ident: key2025101714502716847_18
  publication-title: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics
  doi: 10.1137/1.9781611970838
– volume: 25
  start-page: 2274
  year: 2015
  ident: key2025101714502716847_22
  article-title: On full Jacobian decomposition of the augmented Lagrangian method for separable convex programming
  publication-title: SIAM J. Optim.
  doi: 10.1137/130922793
– volume: 25
  start-page: 1478
  year: 2015
  ident: key2025101714502716847_32
  article-title: On the global linear convergence of the ADMM with multiblock variables
  publication-title: SIAM J. Optim.
  doi: 10.1137/140971178
– volume: 3
  start-page: 1
  year: 2010
  ident: key2025101714502716847_5
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000016
– start-page: 283
  year: 1969
  ident: key2025101714502716847_41
  article-title: A method for nonlinear constraints in minimization problems
  publication-title: Optimization
– year: 1984
  ident: key2025101714502716847_15
  publication-title: Numerical Methods for Nonlinear Variational Problems
  doi: 10.1007/978-3-662-12613-4
SSID ssj0002923762
Score 2.0217342
Snippet We consider a separable convex minimization model whose variables are coupled by linear constraints and they are subject to the positive orthant constraints,...
SourceID crossref
SourceType Index Database
StartPage 81
Title The augmented Lagrangian method with full Jacobian decomposition and logarithmic-quadratic proximal regularization for multiple-block separable convex programming
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2426-8399
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002923762
  issn: 2426-8399
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoELKgLEq8iH3iLDxkkc-1ghKkC7FRJFWk6R4zhLgKRlH9We-DEc-ZWdsZNsFvZQDlyiyIqTKPNlZjz-ZoaQ41xxI7SSzEQqYnGsQA-GQrNS6ciawgqtXcn8SXp2Jmcz9WE0-t3lwlx9T5tGbjbq8r-KGsZA2Jg6-w_i7m8KA3AOQocjiB2ONxa8Xs9dsc0imOg5WKM5_sa-WbSPvGLUPXgP2hBLjgeFRWZ5S99y2wmgEWERvfpSV4b9WOti4Qq7Iuelql0rAOxgv2hzOB1VsWMmshzM47dgabGoOKZlOV77piOC1Z2pbB3ij9OTd8HAK_ZdJroI5bQvKtu7_pPKs_17UH9e-xjurNIX_d3bOEboEvt8WQCv7tBXYOCueQVq94y1-joe6Fvf7qW13KFLq_vLKCTSFZld1rpiX039st0H2im9_YdJ7ImKsETC6RlOzmByFo1vkds8TRRq0OnPbTyPK-QX4aZV_9I-HRTnvxo8fOAADTyZ80Nyr_3Y9MRD5z4Z2eYB-QWwoT1s6BY21MOGImwowoZ2sKE7sKEAG7oXNrSDDd2FDQXY0F3Y0B421MOGDmDzkHw6fXP--i1r-3cwA174mAlrhQ11GqVS88QoHoYl-LsyzhOuYaXMpQVnVsfGFmmYC65LOxZ5lIPWkHEhougROWguGvuY0Cg2sgzjUvISt65LlXJhBRioUiUmT80Tctx91OzSl2nJ9sju6c0ue0bubhH6nBysFmt7RO6Yq1W1XLxwcr8GGgqX6Q
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+augmented+Lagrangian+method+with+full+Jacobian+decomposition+and+logarithmic-quadratic+proximal+regularization+for+multiple-block+separable+convex+programming&rft.jtitle=SMAI+Journal+of+Computational+Mathematics&rft.au=Li%2C+Min&rft.au=Yuan%2C+Xiaoming&rft.date=2018-03-27&rft.issn=2426-8399&rft.eissn=2426-8399&rft.volume=4&rft.spage=81&rft.epage=120&rft_id=info:doi/10.5802%2Fsmai-jcm.30&rft.externalDBID=n%2Fa&rft.externalDocID=10_5802_smai_jcm_30
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2426-8399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2426-8399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2426-8399&client=summon