On Deferred Statistical and Strong Deferred Cesàro Convergences of Sequences With Respect to A Modulus Function

Let f be any modulus function. We prove that the classes of strongly deferred Cesàro convergent sequences defined by f and deferred statistical convergent sequences are equivalent if the sequence is f-deferred uniformly integrable. Some converse inclusions are obtained when the modulus function f is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cumhuriyet Science Journal Ročník 44; číslo 4; s. 753 - 757
Hlavní autoři: Belen, Cemal, Yıldırım, Mustafa
Médium: Journal Article
Jazyk:angličtina
Vydáno: Sivas Cumhuriyet Üniversitesi 28.12.2023
Témata:
ISSN:2587-2680
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let f be any modulus function. We prove that the classes of strongly deferred Cesàro convergent sequences defined by f and deferred statistical convergent sequences are equivalent if the sequence is f-deferred uniformly integrable. Some converse inclusions are obtained when the modulus function f is compatible. Finally, for any compatible modulus f, we prove that any sequence is f-strongly deferred Cesàro convergent if and ony if it is deferred f-statistically convergent and deferred uniformly integrable.
ISSN:2587-2680
DOI:10.17776/csj.1334082