On Deferred Statistical and Strong Deferred Cesàro Convergences of Sequences With Respect to A Modulus Function
Let f be any modulus function. We prove that the classes of strongly deferred Cesàro convergent sequences defined by f and deferred statistical convergent sequences are equivalent if the sequence is f-deferred uniformly integrable. Some converse inclusions are obtained when the modulus function f is...
Uloženo v:
| Vydáno v: | Cumhuriyet Science Journal Ročník 44; číslo 4; s. 753 - 757 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Sivas Cumhuriyet Üniversitesi
28.12.2023
|
| Témata: | |
| ISSN: | 2587-2680 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let f be any modulus function. We prove that the classes of strongly deferred Cesàro convergent sequences defined by f and deferred statistical convergent sequences are equivalent if the sequence is f-deferred uniformly integrable. Some converse inclusions are obtained when the modulus function f is compatible. Finally, for any compatible modulus f, we prove that any sequence is f-strongly deferred Cesàro convergent if and ony if it is deferred f-statistically convergent and deferred uniformly integrable. |
|---|---|
| ISSN: | 2587-2680 |
| DOI: | 10.17776/csj.1334082 |