The MapReduce Model on Cascading Platform for Frequent Itemset Mining

The implementation of parallel algorithms is very interesting research recently. Parallelism is very suitable to handle large-scale data processing. MapReduce is one of the parallel and distributed programming models. The implementation of parallel programming faces many difficulties. The Cascading...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Ročník 12; číslo 2; s. 149 - 160
Hlavní autoři: Rokhman, Nur, Nursanti, Amelia
Médium: Journal Article
Jazyk:angličtina
Vydáno: Universitas Gadjah Mada 31.07.2018
Témata:
ISSN:1978-1520, 2460-7258
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The implementation of parallel algorithms is very interesting research recently. Parallelism is very suitable to handle large-scale data processing. MapReduce is one of the parallel and distributed programming models. The implementation of parallel programming faces many difficulties. The Cascading gives easy scheme of Hadoop system which implements MapReduce model.Frequent itemsets are most often appear objects in a dataset. The Frequent Itemset Mining (FIM) requires complex computation. FIM is a complicated problem when implemented on large-scale data. This paper discusses the implementation of MapReduce model on Cascading for FIM. The experiment uses the Amazon dataset product co-purchasing network metadata.The experiment shows the fact that the simple mechanism of Cascading can be used to solve FIM problem. It gives time complexity O(n), more efficient than the nonparallel which has complexity O(n2/m).
ISSN:1978-1520
2460-7258
DOI:10.22146/ijccs.34102