The MapReduce Model on Cascading Platform for Frequent Itemset Mining
The implementation of parallel algorithms is very interesting research recently. Parallelism is very suitable to handle large-scale data processing. MapReduce is one of the parallel and distributed programming models. The implementation of parallel programming faces many difficulties. The Cascading...
Uložené v:
| Vydané v: | IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Ročník 12; číslo 2; s. 149 - 160 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Universitas Gadjah Mada
31.07.2018
|
| Predmet: | |
| ISSN: | 1978-1520, 2460-7258 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The implementation of parallel algorithms is very interesting research recently. Parallelism is very suitable to handle large-scale data processing. MapReduce is one of the parallel and distributed programming models. The implementation of parallel programming faces many difficulties. The Cascading gives easy scheme of Hadoop system which implements MapReduce model.Frequent itemsets are most often appear objects in a dataset. The Frequent Itemset Mining (FIM) requires complex computation. FIM is a complicated problem when implemented on large-scale data. This paper discusses the implementation of MapReduce model on Cascading for FIM. The experiment uses the Amazon dataset product co-purchasing network metadata.The experiment shows the fact that the simple mechanism of Cascading can be used to solve FIM problem. It gives time complexity O(n), more efficient than the nonparallel which has complexity O(n2/m). |
|---|---|
| AbstractList | The implementation of parallel algorithms is very interesting research recently. Parallelism is very suitable to handle large-scale data processing. MapReduce is one of the parallel and distributed programming models. The implementation of parallel programming faces many difficulties. The Cascading gives easy scheme of Hadoop system which implements MapReduce model.Frequent itemsets are most often appear objects in a dataset. The Frequent Itemset Mining (FIM) requires complex computation. FIM is a complicated problem when implemented on large-scale data. This paper discusses the implementation of MapReduce model on Cascading for FIM. The experiment uses the Amazon dataset product co-purchasing network metadata.The experiment shows the fact that the simple mechanism of Cascading can be used to solve FIM problem. It gives time complexity O(n), more efficient than the nonparallel which has complexity O(n2/m). |
| Author | Nursanti, Amelia Rokhman, Nur |
| Author_xml | – sequence: 1 givenname: Nur surname: Rokhman fullname: Rokhman, Nur – sequence: 2 givenname: Amelia surname: Nursanti fullname: Nursanti, Amelia |
| BookMark | eNo9kM1KAzEUhYNUsNbufIA8gKPJTSaTLKW0WmhRpK5DfuuU6aROpgvf3mEqbs49XA7f4rtFkza1AaF7Sh4BKBdP9cG5_Mg4JXCFpsAFKSoo5QRNqapkQUsgN2iec21JSRVQKmGKlruvgLfm9BH82Q0t-dDg1OKFyc74ut3j98b0MXVHPARedeH7HNoer_twzKHH27odRnfoOpomh_nfnaHP1XK3eC02by_rxfOmcJRTKIKyxArrgove--BKRq0jYBgA8wAOZCTKBUuDiaIqmR0GlBBpqBKSc8NmaH3h-mQO-tTVR9P96GRqPT5St9em62vXBC2iIsrSyCWUPPLKGqeIFCWDaCtHxMB6uLBcl3LuQvznUaJHo3o0qkej7Bc6VGqK |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.22146/ijccs.34102 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2460-7258 |
| EndPage | 160 |
| ExternalDocumentID | oai_doaj_org_article_6f909b1f48254f47bac9086532fb7c06 10_22146_ijccs_34102 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c1412-e9b0b6bcecfdddec531bc02a3223d22c28f09ceb1eaf6753b5311008a196844a3 |
| IEDL.DBID | DOA |
| ISSN | 1978-1520 |
| IngestDate | Fri Oct 03 12:51:01 EDT 2025 Sat Nov 29 01:51:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://creativecommons.org/licenses/by-sa/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1412-e9b0b6bcecfdddec531bc02a3223d22c28f09ceb1eaf6753b5311008a196844a3 |
| OpenAccessLink | https://doaj.org/article/6f909b1f48254f47bac9086532fb7c06 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6f909b1f48254f47bac9086532fb7c06 crossref_primary_10_22146_ijccs_34102 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-31 |
| PublicationDateYYYYMMDD | 2018-07-31 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-31 day: 31 |
| PublicationDecade | 2010 |
| PublicationTitle | IJCCS (Indonesian Journal of Computing and Cybernetics Systems) |
| PublicationYear | 2018 |
| Publisher | Universitas Gadjah Mada |
| Publisher_xml | – name: Universitas Gadjah Mada |
| SSID | ssib051921182 ssj0002046691 |
| Score | 2.035267 |
| Snippet | The implementation of parallel algorithms is very interesting research recently. Parallelism is very suitable to handle large-scale data processing. MapReduce... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 149 |
| SubjectTerms | Cascading Frequent Itemset Mining MapReduce |
| Title | The MapReduce Model on Cascading Platform for Frequent Itemset Mining |
| URI | https://doaj.org/article/6f909b1f48254f47bac9086532fb7c06 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2460-7258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002046691 issn: 1978-1520 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2460-7258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib051921182 issn: 1978-1520 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPHgRRcX5ixz0WNemadMcdWx4sGOIym4leUtgQ7qxVo_-7b4knezmxUsoJZT2e8nL-14f3yPkVlhIdcrSSBbKERTOIy3ZPBLaMmFyppnvovD-LCaTYjaT051WX64mLMgDB-AGuZWx1InljspYLrQCiWF4ljKrBQSxbYx6dsgUrqTMqXwlnWrL0v9u43nu2-clnjZlLA5V8Mw1th4slgDNPTr0LruyPZ92ZPz9eTM-IoddoEgfwgsekz1Tn5ARWpWWav3iBFfxyrWxoauaDlUDvhieTj9U6-JQigMdb3yhdEtdQr4xLS19O4hT8jYevQ6foq4RQgQJT1hkpI51rsGAnaM7Atw3GmKmcDOmc8aAFTaWgF7XKIsEINU4wYn2KNxeBecqPSO9elWbc0IFoodkGhTSCIyd0McgWjKDIuEWyZTqk7vt51froHdRIU_wMFUepsrD1CePDpvfOU6l2t9A21Wd7aq_bHfxHw-5JAcYxBQh33pFeu3m01yTffhqF83mxi8LHMvv0Q9So7jF |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+MapReduce+Model+on+Cascading+Platform+for+Frequent+Itemset+Mining&rft.jtitle=IJCCS+%28Indonesian+Journal+of+Computing+and+Cybernetics+Systems%29&rft.au=Nur+Rokhman&rft.au=Amelia+Nursanti&rft.date=2018-07-31&rft.pub=Universitas+Gadjah+Mada&rft.issn=1978-1520&rft.eissn=2460-7258&rft.volume=12&rft.issue=2&rft.spage=149&rft.epage=160&rft_id=info:doi/10.22146%2Fijccs.34102&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6f909b1f48254f47bac9086532fb7c06 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1978-1520&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1978-1520&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1978-1520&client=summon |