On the structure of the fundamental subspaces of acyclic matrices with 0 in the diagonal

A matrix is called acyclic if replacing the diagonal entries with \(0\), and the nonzero diagonal entries with \(1\), yields the adjacency matrix of a forest. In this paper we show that the null space and the rank of an acyclic matrix with \(0\) in the diagonal is obtained from the null space and th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The American journal of combinatorics Ročník 2
Hlavní autori: Jaume, Daniel, Pastine, Adrian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: American Journal of Combinatorics 22.08.2023
Predmet:
ISSN:2768-4202, 2768-4202
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A matrix is called acyclic if replacing the diagonal entries with \(0\), and the nonzero diagonal entries with \(1\), yields the adjacency matrix of a forest. In this paper we show that the null space and the rank of an acyclic matrix with \(0\) in the diagonal is obtained from the null space and the rank of the adjacency matrix of the forest by multipliying by nonsingular diagonal matrices. We combine these with an algorithm for finding a sparsest basis of the null space of a forest to provide an optimal time algorithm for finding a sparsest basis of the null space of acyclic matrices with \(0\) in the diagonal.
ISSN:2768-4202
2768-4202
DOI:10.63151/amjc.v2i.11