On the structure of the fundamental subspaces of acyclic matrices with 0 in the diagonal
A matrix is called acyclic if replacing the diagonal entries with \(0\), and the nonzero diagonal entries with \(1\), yields the adjacency matrix of a forest. In this paper we show that the null space and the rank of an acyclic matrix with \(0\) in the diagonal is obtained from the null space and th...
Uloženo v:
| Vydáno v: | The American journal of combinatorics Ročník 2 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
American Journal of Combinatorics
22.08.2023
|
| Témata: | |
| ISSN: | 2768-4202, 2768-4202 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A matrix is called acyclic if replacing the diagonal entries with \(0\), and the nonzero diagonal entries with \(1\), yields the adjacency matrix of a forest. In this paper we show that the null space and the rank of an acyclic matrix with \(0\) in the diagonal is obtained from the null space and the rank of the adjacency matrix of the forest by multipliying by nonsingular diagonal matrices. We combine these with an algorithm for finding a sparsest basis of the null space of a forest to provide an optimal time algorithm for finding a sparsest basis of the null space of acyclic matrices with \(0\) in the diagonal. |
|---|---|
| ISSN: | 2768-4202 2768-4202 |
| DOI: | 10.63151/amjc.v2i.11 |