On the structure of the fundamental subspaces of acyclic matrices with 0 in the diagonal

A matrix is called acyclic if replacing the diagonal entries with \(0\), and the nonzero diagonal entries with \(1\), yields the adjacency matrix of a forest. In this paper we show that the null space and the rank of an acyclic matrix with \(0\) in the diagonal is obtained from the null space and th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The American journal of combinatorics Ročník 2
Hlavní autoři: Jaume, Daniel, Pastine, Adrian
Médium: Journal Article
Jazyk:angličtina
Vydáno: American Journal of Combinatorics 22.08.2023
Témata:
ISSN:2768-4202, 2768-4202
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A matrix is called acyclic if replacing the diagonal entries with \(0\), and the nonzero diagonal entries with \(1\), yields the adjacency matrix of a forest. In this paper we show that the null space and the rank of an acyclic matrix with \(0\) in the diagonal is obtained from the null space and the rank of the adjacency matrix of the forest by multipliying by nonsingular diagonal matrices. We combine these with an algorithm for finding a sparsest basis of the null space of a forest to provide an optimal time algorithm for finding a sparsest basis of the null space of acyclic matrices with \(0\) in the diagonal.
ISSN:2768-4202
2768-4202
DOI:10.63151/amjc.v2i.11