Crafting imperceptible on-manifold adversarial attacks for tabular data
Adversarial attacks on tabular data present unique challenges due to the heterogeneous nature of mixed categorical and numerical features. Unlike images where pixel perturbations maintain visual similarity, tabular data lacks intuitive similarity metrics, making it difficult to define imperceptible...
Gespeichert in:
| Veröffentlicht in: | Applied soft computing Jg. 186; S. 114286 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.01.2026
|
| Schlagworte: | |
| ISSN: | 1568-4946 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Adversarial attacks on tabular data present unique challenges due to the heterogeneous nature of mixed categorical and numerical features. Unlike images where pixel perturbations maintain visual similarity, tabular data lacks intuitive similarity metrics, making it difficult to define imperceptible modifications. Additionally, traditional gradient-based methods prioritise ℓp-norm constraints, often producing adversarial examples that deviate from the original data distributions, making them detectable. To address this, we propose a latent-space perturbation framework using a mixed-input Variational Autoencoder (VAE) to generate statistically consistent adversarial examples. The proposed VAE integrates categorical embeddings and numerical features into a unified latent manifold, enabling perturbations that preserve statistical consistency. We introduce In-Distribution Success Rate (IDSR) to jointly evaluate attack effectiveness and distributional alignment. Evaluation across six publicly available datasets and three model architectures demonstrates that our method achieves substantially lower outlier rates and more consistent performance compared to traditional input-space attacks and other VAE-based methods adapted from image domain approaches, achieving substantially lower outlier rates and higher IDSR across six datasets and three model architectures. Our comprehensive analyses of hyperparameter sensitivity, sparsity control, and generative architecture demonstrate that the effectiveness of VAE-based attacks depends strongly on reconstruction quality and the availability of sufficient training data. When these conditions are met, the proposed framework achieves superior practical utility and stability compared with input-space methods. This work underscores the importance of maintaining on-manifold perturbations for generating realistic and robust adversarial examples in tabular domains.
•Novel VAE-based framework generates imperceptible adversarial attacks for tabular data.•Latent space approach unifies mixed types of features into coherent representation.•Propose In-Distribution Success Rate to assess the deviation of adversarial examples.•Our VAE attack achieves overall best performance across diverse datasets and models. |
|---|---|
| ISSN: | 1568-4946 |
| DOI: | 10.1016/j.asoc.2025.114286 |