Differentially-Private Multi-Party Sketching for Large-Scale Statistics
We consider a scenario where multiple organizations holding large amounts of sensitive data from their users wish to compute aggregate statistics on this data while protecting the privacy of individual users. To support large-scale analytics we investigate how this privacy can be provided for the ca...
Uloženo v:
| Vydáno v: | Proceedings on Privacy Enhancing Technologies Ročník 2020; číslo 3; s. 153 - 174 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Sciendo
01.07.2020
|
| Témata: | |
| ISSN: | 2299-0984, 2299-0984 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We consider a scenario where multiple organizations holding large amounts of sensitive data from their users wish to compute aggregate statistics on this data while protecting the privacy of individual users. To support large-scale analytics we investigate how this privacy can be provided for the case of sketching algorithms running in time sub-linear of the input size.
We begin with the well-known LogLog sketch for computing the number of unique elements in a data stream. We show that this algorithm already achieves differential privacy (even without adding any noise) when computed using a private hash function by a trusted curator. Next, we show how to eliminate this requirement of a private hash function by injecting a small amount of noise, allowing us to instantiate an efficient LogLog protocol for the multi-party setting. To demonstrate the practicality of this approach, we run extensive experimentation on multiple data sets, including the publicly available IP address data set from University of Michigan’s scans of internet IPv4 space, to determine the trade-offs among efficiency, privacy and accuracy of our implementation for varying numbers of parties and input sizes.
Finally, we generalize our approach for the LogLog sketch and obtain a general framework for constructing multi-party differentially private protocols for several other sketching algorithms. |
|---|---|
| AbstractList | We consider a scenario where multiple organizations holding large amounts of sensitive data from their users wish to compute aggregate statistics on this data while protecting the privacy of individual users. To support large-scale analytics we investigate how this privacy can be provided for the case of sketching algorithms running in time sub-linear of the input size.
We begin with the well-known LogLog sketch for computing the number of unique elements in a data stream. We show that this algorithm already achieves differential privacy (even without adding any noise) when computed using a private hash function by a trusted curator. Next, we show how to eliminate this requirement of a private hash function by injecting a small amount of noise, allowing us to instantiate an efficient LogLog protocol for the multi-party setting. To demonstrate the practicality of this approach, we run extensive experimentation on multiple data sets, including the publicly available IP address data set from University of Michigan’s scans of internet IPv4 space, to determine the trade-offs among efficiency, privacy and accuracy of our implementation for varying numbers of parties and input sizes.
Finally, we generalize our approach for the LogLog sketch and obtain a general framework for constructing multi-party differentially private protocols for several other sketching algorithms. |
| Author | Yerukhimovich, Arkady Kulkarni, Mukul Choi, Seung Geol Dachman-soled, Dana |
| Author_xml | – sequence: 1 givenname: Seung Geol surname: Choi fullname: Choi, Seung Geol email: choi@usna.edu organization: United States Naval Academy – sequence: 2 givenname: Dana surname: Dachman-soled fullname: Dachman-soled, Dana email: danadach@ece.umd.edu organization: University of Maryland, Colleage Park – sequence: 3 givenname: Mukul surname: Kulkarni fullname: Kulkarni, Mukul email: mukul@cs.umass.edu organization: University of MassachusettsAmherst – sequence: 4 givenname: Arkady surname: Yerukhimovich fullname: Yerukhimovich, Arkady email: arkady@gwu.edu organization: George Washington University |
| BookMark | eNp1kD1PwzAQQC1UJErpzpg_YLiznQ9voAIFqYhKhTlyYru4hKSyXVD-PYnKwMJ0b7h3Or1zMmm71hByiXDFRF5c77u9iYEyYEABRH5CpoxJSUEWYvKHz8g8hB0AYJYipsWULO-ctcabNjrVND1de_elokmeD010dK187JPNh4n1u2u3ie18slJ-a-imVo1JNlFFF6KrwwU5taoJZv47Z-Tt4f518UhXL8unxe2K1iiAU50pafNcImSV1tqmiiMUaa0QpchAyjwrpClywYY1pSvGqwxFilpXWFlp-IzA8W7tuxC8seXeu0_l-xKhHFuUxxbl2KIcWwzKzVH5Vk00XputP_QDlLvu4Nvh2X_VETimnP8A5Xpqig |
| Cites_doi | 10.1109/SP40000.2020.00016 10.1145/380752.380850 10.1109/ICDE.2006.44 10.1137/060673096 10.1145/3319535.3345650 10.46298/dmtcs.3545 10.1145/1147954.1147955 10.1137/1.9781611973075.92 10.1007/978-3-540-30576-7_17 10.1145/1340771.1340773 10.1201/9781420010756 10.1007/978-3-319-19962-7_24 10.1109/FOCS.2006.37 10.1145/2452376.2452456 10.1007/978-3-662-43936-4_26 10.1145/28395.28420 10.1109/FOCS.2018.00058 10.1109/FOCS.2012.67 10.1145/2504730.2504755 10.1007/11761679_29 10.1090/conm/026/737400 10.1145/2488608.2488652 10.1016/0022-0000(85)90041-8 10.14778/3291264.3291274 10.1109/TDSC.2015.2423675 10.2478/popets-2019-0018 10.1109/TIFS.2017.2721360 10.1145/1159892.1159900 10.1145/1007352.1007372 10.1145/3146549 10.1515/popets-2018-0010 10.1137/130949117 10.1007/978-3-540-85174-5_25 10.1145/1060590.1060621 10.1561/0400000042 10.1561/3300000019 10.1145/2902251.2902291 10.1145/237814.237827 10.1016/S0304-3975(03)00400-6 10.1006/jcss.1997.1545 10.1145/276698.276876 10.1145/3133956.3134034 10.1109/FOCS.2007.66 10.1137/08074489X 10.1007/978-3-540-39658-1_55 10.1109/FOCS.2008.27 10.1007/978-3-642-03356-8_8 10.1145/2976749.2978310 10.1016/j.jalgor.2003.12.001 10.1007/11681878_14 10.14722/ndss.2016.23175 10.21236/ADA465464 10.1007/s00211-010-0331-6 10.1007/11841036_16 10.1016/j.comnet.2013.05.011 10.1007/3-540-45726-7_1 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.2478/popets-2020-0047 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Law |
| EISSN | 2299-0984 |
| EndPage | 174 |
| ExternalDocumentID | 10_2478_popets_2020_0047 10_2478_popets_2020_004720203153 |
| GroupedDBID | 5VS ACGFS ADBBV ADBLJ ALMA_UNASSIGNED_HOLDINGS BCNDV KQ8 M~E OK1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c1403-d6a9f779106bdddf5a31085ca119460997689e87429f7adb23b61451ddb1bf9e3 |
| ISSN | 2299-0984 |
| IngestDate | Sat Oct 25 08:35:23 EDT 2025 Thu Jul 10 10:37:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. http://creativecommons.org/licenses/by-nc-nd/3.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1403-d6a9f779106bdddf5a31085ca119460997689e87429f7adb23b61451ddb1bf9e3 |
| OpenAccessLink | https://www.degruyter.com/doi/10.2478/popets-2020-0047 |
| PageCount | 22 |
| ParticipantIDs | crossref_primary_10_2478_popets_2020_0047 walterdegruyter_journals_10_2478_popets_2020_004720203153 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings on Privacy Enhancing Technologies |
| PublicationYear | 2020 |
| Publisher | Sciendo |
| Publisher_xml | – name: Sciendo |
| References | 2022042407321718130_j_popets-2020-0047_ref_035_w2aab3b7c12b1b6b1ab1ac35Aa 2022042407321718130_j_popets-2020-0047_ref_017_w2aab3b7c12b1b6b1ab1ac17Aa 2022042407321718130_j_popets-2020-0047_ref_066_w2aab3b7c12b1b6b1ab1ac66Aa 2022042407321718130_j_popets-2020-0047_ref_048_w2aab3b7c12b1b6b1ab1ac48Aa 2022042407321718130_j_popets-2020-0047_ref_030_w2aab3b7c12b1b6b1ab1ac30Aa 2022042407321718130_j_popets-2020-0047_ref_012_w2aab3b7c12b1b6b1ab1ac12Aa 2022042407321718130_j_popets-2020-0047_ref_061_w2aab3b7c12b1b6b1ab1ac61Aa 2022042407321718130_j_popets-2020-0047_ref_005_w2aab3b7c12b1b6b1ab1ab5Aa 2022042407321718130_j_popets-2020-0047_ref_043_w2aab3b7c12b1b6b1ab1ac43Aa 2022042407321718130_j_popets-2020-0047_ref_025_w2aab3b7c12b1b6b1ab1ac25Aa 2022042407321718130_j_popets-2020-0047_ref_056_w2aab3b7c12b1b6b1ab1ac56Aa 2022042407321718130_j_popets-2020-0047_ref_038_w2aab3b7c12b1b6b1ab1ac38Aa 2022042407321718130_j_popets-2020-0047_ref_069_w2aab3b7c12b1b6b1ab1ac69Aa 2022042407321718130_j_popets-2020-0047_ref_020_w2aab3b7c12b1b6b1ab1ac20Aa 2022042407321718130_j_popets-2020-0047_ref_051_w2aab3b7c12b1b6b1ab1ac51Aa 2022042407321718130_j_popets-2020-0047_ref_033_w2aab3b7c12b1b6b1ab1ac33Aa 2022042407321718130_j_popets-2020-0047_ref_015_w2aab3b7c12b1b6b1ab1ac15Aa 2022042407321718130_j_popets-2020-0047_ref_064_w2aab3b7c12b1b6b1ab1ac64Aa 2022042407321718130_j_popets-2020-0047_ref_046_w2aab3b7c12b1b6b1ab1ac46Aa 2022042407321718130_j_popets-2020-0047_ref_028_w2aab3b7c12b1b6b1ab1ac28Aa 2022042407321718130_j_popets-2020-0047_ref_059_w2aab3b7c12b1b6b1ab1ac59Aa 2022042407321718130_j_popets-2020-0047_ref_007_w2aab3b7c12b1b6b1ab1ab7Aa 2022042407321718130_j_popets-2020-0047_ref_008_w2aab3b7c12b1b6b1ab1ab8Aa 2022042407321718130_j_popets-2020-0047_ref_050_w2aab3b7c12b1b6b1ab1ac50Aa 2022042407321718130_j_popets-2020-0047_ref_032_w2aab3b7c12b1b6b1ab1ac32Aa 2022042407321718130_j_popets-2020-0047_ref_014_w2aab3b7c12b1b6b1ab1ac14Aa 2022042407321718130_j_popets-2020-0047_ref_063_w2aab3b7c12b1b6b1ab1ac63Aa 2022042407321718130_j_popets-2020-0047_ref_045_w2aab3b7c12b1b6b1ab1ac45Aa 2022042407321718130_j_popets-2020-0047_ref_027_w2aab3b7c12b1b6b1ab1ac27Aa 2022042407321718130_j_popets-2020-0047_ref_002_w2aab3b7c12b1b6b1ab1ab2Aa 2022042407321718130_j_popets-2020-0047_ref_058_w2aab3b7c12b1b6b1ab1ac58Aa 2022042407321718130_j_popets-2020-0047_ref_031_w2aab3b7c12b1b6b1ab1ac31Aa 2022042407321718130_j_popets-2020-0047_ref_013_w2aab3b7c12b1b6b1ab1ac13Aa 2022042407321718130_j_popets-2020-0047_ref_062_w2aab3b7c12b1b6b1ab1ac62Aa 2022042407321718130_j_popets-2020-0047_ref_044_w2aab3b7c12b1b6b1ab1ac44Aa 2022042407321718130_j_popets-2020-0047_ref_026_w2aab3b7c12b1b6b1ab1ac26Aa 2022042407321718130_j_popets-2020-0047_ref_001_w2aab3b7c12b1b6b1ab1ab1Aa 2022042407321718130_j_popets-2020-0047_ref_057_w2aab3b7c12b1b6b1ab1ac57Aa 2022042407321718130_j_popets-2020-0047_ref_039_w2aab3b7c12b1b6b1ab1ac39Aa 2022042407321718130_j_popets-2020-0047_ref_021_w2aab3b7c12b1b6b1ab1ac21Aa 2022042407321718130_j_popets-2020-0047_ref_070_w2aab3b7c12b1b6b1ab1ac70Aa 2022042407321718130_j_popets-2020-0047_ref_052_w2aab3b7c12b1b6b1ab1ac52Aa 2022042407321718130_j_popets-2020-0047_ref_034_w2aab3b7c12b1b6b1ab1ac34Aa 2022042407321718130_j_popets-2020-0047_ref_016_w2aab3b7c12b1b6b1ab1ac16Aa 2022042407321718130_j_popets-2020-0047_ref_065_w2aab3b7c12b1b6b1ab1ac65Aa 2022042407321718130_j_popets-2020-0047_ref_047_w2aab3b7c12b1b6b1ab1ac47Aa 2022042407321718130_j_popets-2020-0047_ref_029_w2aab3b7c12b1b6b1ab1ac29Aa 2022042407321718130_j_popets-2020-0047_ref_004_w2aab3b7c12b1b6b1ab1ab4Aa 2022042407321718130_j_popets-2020-0047_ref_011_w2aab3b7c12b1b6b1ab1ac11Aa 2022042407321718130_j_popets-2020-0047_ref_060_w2aab3b7c12b1b6b1ab1ac60Aa 2022042407321718130_j_popets-2020-0047_ref_042_w2aab3b7c12b1b6b1ab1ac42Aa 2022042407321718130_j_popets-2020-0047_ref_024_w2aab3b7c12b1b6b1ab1ac24Aa 2022042407321718130_j_popets-2020-0047_ref_055_w2aab3b7c12b1b6b1ab1ac55Aa 2022042407321718130_j_popets-2020-0047_ref_037_w2aab3b7c12b1b6b1ab1ac37Aa 2022042407321718130_j_popets-2020-0047_ref_019_w2aab3b7c12b1b6b1ab1ac19Aa 2022042407321718130_j_popets-2020-0047_ref_003_w2aab3b7c12b1b6b1ab1ab3Aa 2022042407321718130_j_popets-2020-0047_ref_068_w2aab3b7c12b1b6b1ab1ac68Aa 2022042407321718130_j_popets-2020-0047_ref_010_w2aab3b7c12b1b6b1ab1ac10Aa 2022042407321718130_j_popets-2020-0047_ref_041_w2aab3b7c12b1b6b1ab1ac41Aa 2022042407321718130_j_popets-2020-0047_ref_023_w2aab3b7c12b1b6b1ab1ac23Aa 2022042407321718130_j_popets-2020-0047_ref_054_w2aab3b7c12b1b6b1ab1ac54Aa 2022042407321718130_j_popets-2020-0047_ref_036_w2aab3b7c12b1b6b1ab1ac36Aa 2022042407321718130_j_popets-2020-0047_ref_018_w2aab3b7c12b1b6b1ab1ac18Aa 2022042407321718130_j_popets-2020-0047_ref_067_w2aab3b7c12b1b6b1ab1ac67Aa 2022042407321718130_j_popets-2020-0047_ref_049_w2aab3b7c12b1b6b1ab1ac49Aa 2022042407321718130_j_popets-2020-0047_ref_006_w2aab3b7c12b1b6b1ab1ab6Aa 2022042407321718130_j_popets-2020-0047_ref_009_w2aab3b7c12b1b6b1ab1ab9Aa 2022042407321718130_j_popets-2020-0047_ref_040_w2aab3b7c12b1b6b1ab1ac40Aa 2022042407321718130_j_popets-2020-0047_ref_022_w2aab3b7c12b1b6b1ab1ac22Aa 2022042407321718130_j_popets-2020-0047_ref_053_w2aab3b7c12b1b6b1ab1ac53Aa |
| References_xml | – ident: 2022042407321718130_j_popets-2020-0047_ref_038_w2aab3b7c12b1b6b1ab1ac38Aa doi: 10.1109/SP40000.2020.00016 – ident: 2022042407321718130_j_popets-2020-0047_ref_039_w2aab3b7c12b1b6b1ab1ac39Aa doi: 10.1145/380752.380850 – ident: 2022042407321718130_j_popets-2020-0047_ref_058_w2aab3b7c12b1b6b1ab1ac58Aa doi: 10.1109/ICDE.2006.44 – ident: 2022042407321718130_j_popets-2020-0047_ref_024_w2aab3b7c12b1b6b1ab1ac24Aa – ident: 2022042407321718130_j_popets-2020-0047_ref_030_w2aab3b7c12b1b6b1ab1ac30Aa – ident: 2022042407321718130_j_popets-2020-0047_ref_003_w2aab3b7c12b1b6b1ab1ab3Aa doi: 10.1137/060673096 – ident: 2022042407321718130_j_popets-2020-0047_ref_069_w2aab3b7c12b1b6b1ab1ac69Aa doi: 10.1145/3319535.3345650 – ident: 2022042407321718130_j_popets-2020-0047_ref_034_w2aab3b7c12b1b6b1ab1ac34Aa doi: 10.46298/dmtcs.3545 – ident: 2022042407321718130_j_popets-2020-0047_ref_041_w2aab3b7c12b1b6b1ab1ac41Aa doi: 10.1145/1147954.1147955 – ident: 2022042407321718130_j_popets-2020-0047_ref_054_w2aab3b7c12b1b6b1ab1ac54Aa doi: 10.1137/1.9781611973075.92 – ident: 2022042407321718130_j_popets-2020-0047_ref_036_w2aab3b7c12b1b6b1ab1ac36Aa doi: 10.1007/978-3-540-30576-7_17 – ident: 2022042407321718130_j_popets-2020-0047_ref_055_w2aab3b7c12b1b6b1ab1ac55Aa doi: 10.1145/1340771.1340773 – ident: 2022042407321718130_j_popets-2020-0047_ref_048_w2aab3b7c12b1b6b1ab1ac48Aa doi: 10.1201/9781420010756 – ident: 2022042407321718130_j_popets-2020-0047_ref_028_w2aab3b7c12b1b6b1ab1ac28Aa doi: 10.1007/978-3-319-19962-7_24 – ident: 2022042407321718130_j_popets-2020-0047_ref_062_w2aab3b7c12b1b6b1ab1ac62Aa – ident: 2022042407321718130_j_popets-2020-0047_ref_059_w2aab3b7c12b1b6b1ab1ac59Aa doi: 10.1109/FOCS.2006.37 – ident: 2022042407321718130_j_popets-2020-0047_ref_049_w2aab3b7c12b1b6b1ab1ac49Aa – ident: 2022042407321718130_j_popets-2020-0047_ref_040_w2aab3b7c12b1b6b1ab1ac40Aa doi: 10.1145/2452376.2452456 – ident: 2022042407321718130_j_popets-2020-0047_ref_006_w2aab3b7c12b1b6b1ab1ab6Aa – ident: 2022042407321718130_j_popets-2020-0047_ref_007_w2aab3b7c12b1b6b1ab1ab7Aa doi: 10.1007/978-3-662-43936-4_26 – ident: 2022042407321718130_j_popets-2020-0047_ref_037_w2aab3b7c12b1b6b1ab1ac37Aa doi: 10.1145/28395.28420 – ident: 2022042407321718130_j_popets-2020-0047_ref_045_w2aab3b7c12b1b6b1ab1ac45Aa doi: 10.1109/FOCS.2018.00058 – ident: 2022042407321718130_j_popets-2020-0047_ref_002_w2aab3b7c12b1b6b1ab1ab2Aa – ident: 2022042407321718130_j_popets-2020-0047_ref_014_w2aab3b7c12b1b6b1ab1ac14Aa doi: 10.1109/FOCS.2012.67 – ident: 2022042407321718130_j_popets-2020-0047_ref_023_w2aab3b7c12b1b6b1ab1ac23Aa doi: 10.1145/2504730.2504755 – ident: 2022042407321718130_j_popets-2020-0047_ref_060_w2aab3b7c12b1b6b1ab1ac60Aa – ident: 2022042407321718130_j_popets-2020-0047_ref_025_w2aab3b7c12b1b6b1ab1ac25Aa doi: 10.1007/11761679_29 – ident: 2022042407321718130_j_popets-2020-0047_ref_046_w2aab3b7c12b1b6b1ab1ac46Aa doi: 10.1090/conm/026/737400 – ident: 2022042407321718130_j_popets-2020-0047_ref_057_w2aab3b7c12b1b6b1ab1ac57Aa doi: 10.1145/2488608.2488652 – ident: 2022042407321718130_j_popets-2020-0047_ref_068_w2aab3b7c12b1b6b1ab1ac68Aa – ident: 2022042407321718130_j_popets-2020-0047_ref_035_w2aab3b7c12b1b6b1ab1ac35Aa doi: 10.1016/0022-0000(85)90041-8 – ident: 2022042407321718130_j_popets-2020-0047_ref_009_w2aab3b7c12b1b6b1ab1ab9Aa doi: 10.14778/3291264.3291274 – ident: 2022042407321718130_j_popets-2020-0047_ref_050_w2aab3b7c12b1b6b1ab1ac50Aa doi: 10.1109/TDSC.2015.2423675 – ident: 2022042407321718130_j_popets-2020-0047_ref_018_w2aab3b7c12b1b6b1ab1ac18Aa doi: 10.2478/popets-2019-0018 – ident: 2022042407321718130_j_popets-2020-0047_ref_020_w2aab3b7c12b1b6b1ab1ac20Aa doi: 10.1109/TIFS.2017.2721360 – ident: 2022042407321718130_j_popets-2020-0047_ref_032_w2aab3b7c12b1b6b1ab1ac32Aa doi: 10.1145/1159892.1159900 – ident: 2022042407321718130_j_popets-2020-0047_ref_066_w2aab3b7c12b1b6b1ab1ac66Aa – ident: 2022042407321718130_j_popets-2020-0047_ref_064_w2aab3b7c12b1b6b1ab1ac64Aa doi: 10.1145/1007352.1007372 – ident: 2022042407321718130_j_popets-2020-0047_ref_063_w2aab3b7c12b1b6b1ab1ac63Aa doi: 10.1145/3146549 – ident: 2022042407321718130_j_popets-2020-0047_ref_017_w2aab3b7c12b1b6b1ab1ac17Aa – ident: 2022042407321718130_j_popets-2020-0047_ref_004_w2aab3b7c12b1b6b1ab1ab4Aa doi: 10.1515/popets-2018-0010 – ident: 2022042407321718130_j_popets-2020-0047_ref_010_w2aab3b7c12b1b6b1ab1ac10Aa doi: 10.1137/130949117 – ident: 2022042407321718130_j_popets-2020-0047_ref_001_w2aab3b7c12b1b6b1ab1ab1Aa – ident: 2022042407321718130_j_popets-2020-0047_ref_011_w2aab3b7c12b1b6b1ab1ac11Aa doi: 10.1007/978-3-540-85174-5_25 – ident: 2022042407321718130_j_popets-2020-0047_ref_043_w2aab3b7c12b1b6b1ab1ac43Aa doi: 10.1145/1060590.1060621 – ident: 2022042407321718130_j_popets-2020-0047_ref_027_w2aab3b7c12b1b6b1ab1ac27Aa doi: 10.1561/0400000042 – ident: 2022042407321718130_j_popets-2020-0047_ref_031_w2aab3b7c12b1b6b1ab1ac31Aa doi: 10.1561/3300000019 – ident: 2022042407321718130_j_popets-2020-0047_ref_061_w2aab3b7c12b1b6b1ab1ac61Aa doi: 10.1145/2902251.2902291 – ident: 2022042407321718130_j_popets-2020-0047_ref_012_w2aab3b7c12b1b6b1ab1ac12Aa doi: 10.1145/237814.237827 – ident: 2022042407321718130_j_popets-2020-0047_ref_015_w2aab3b7c12b1b6b1ab1ac15Aa doi: 10.1016/S0304-3975(03)00400-6 – ident: 2022042407321718130_j_popets-2020-0047_ref_005_w2aab3b7c12b1b6b1ab1ab5Aa doi: 10.1006/jcss.1997.1545 – ident: 2022042407321718130_j_popets-2020-0047_ref_042_w2aab3b7c12b1b6b1ab1ac42Aa doi: 10.1145/276698.276876 – ident: 2022042407321718130_j_popets-2020-0047_ref_033_w2aab3b7c12b1b6b1ab1ac33Aa doi: 10.1145/3133956.3134034 – ident: 2022042407321718130_j_popets-2020-0047_ref_051_w2aab3b7c12b1b6b1ab1ac51Aa doi: 10.1109/FOCS.2007.66 – ident: 2022042407321718130_j_popets-2020-0047_ref_065_w2aab3b7c12b1b6b1ab1ac65Aa doi: 10.1137/08074489X – ident: 2022042407321718130_j_popets-2020-0047_ref_029_w2aab3b7c12b1b6b1ab1ac29Aa – ident: 2022042407321718130_j_popets-2020-0047_ref_022_w2aab3b7c12b1b6b1ab1ac22Aa doi: 10.1007/978-3-540-39658-1_55 – ident: 2022042407321718130_j_popets-2020-0047_ref_056_w2aab3b7c12b1b6b1ab1ac56Aa – ident: 2022042407321718130_j_popets-2020-0047_ref_047_w2aab3b7c12b1b6b1ab1ac47Aa doi: 10.1109/FOCS.2008.27 – ident: 2022042407321718130_j_popets-2020-0047_ref_053_w2aab3b7c12b1b6b1ab1ac53Aa doi: 10.1007/978-3-642-03356-8_8 – ident: 2022042407321718130_j_popets-2020-0047_ref_044_w2aab3b7c12b1b6b1ab1ac44Aa doi: 10.1145/2976749.2978310 – ident: 2022042407321718130_j_popets-2020-0047_ref_016_w2aab3b7c12b1b6b1ab1ac16Aa doi: 10.1016/j.jalgor.2003.12.001 – ident: 2022042407321718130_j_popets-2020-0047_ref_070_w2aab3b7c12b1b6b1ab1ac70Aa – ident: 2022042407321718130_j_popets-2020-0047_ref_026_w2aab3b7c12b1b6b1ab1ac26Aa doi: 10.1007/11681878_14 – ident: 2022042407321718130_j_popets-2020-0047_ref_052_w2aab3b7c12b1b6b1ab1ac52Aa doi: 10.14722/ndss.2016.23175 – ident: 2022042407321718130_j_popets-2020-0047_ref_019_w2aab3b7c12b1b6b1ab1ac19Aa doi: 10.21236/ADA465464 – ident: 2022042407321718130_j_popets-2020-0047_ref_021_w2aab3b7c12b1b6b1ab1ac21Aa doi: 10.1007/s00211-010-0331-6 – ident: 2022042407321718130_j_popets-2020-0047_ref_013_w2aab3b7c12b1b6b1ab1ac13Aa doi: 10.1007/11841036_16 – ident: 2022042407321718130_j_popets-2020-0047_ref_067_w2aab3b7c12b1b6b1ab1ac67Aa doi: 10.1016/j.comnet.2013.05.011 – ident: 2022042407321718130_j_popets-2020-0047_ref_008_w2aab3b7c12b1b6b1ab1ab8Aa doi: 10.1007/3-540-45726-7_1 |
| SSID | ssj0001651158 |
| Score | 2.1100276 |
| Snippet | We consider a scenario where multiple organizations holding large amounts of sensitive data from their users wish to compute aggregate statistics on this data... |
| SourceID | crossref walterdegruyter |
| SourceType | Index Database Publisher |
| StartPage | 153 |
| SubjectTerms | differential privacy secure computation sketching algorithms |
| Title | Differentially-Private Multi-Party Sketching for Large-Scale Statistics |
| URI | https://www.degruyter.com/doi/10.2478/popets-2020-0047 |
| Volume | 2020 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2299-0984 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001651158 issn: 2299-0984 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBabtIdeQp80feFDLqWI1i_JOoY8IQ8WkkByMrIld8Ebe3HiJHvJ78rP64wke52lgZbSizAGDUIzmpc-zRCyEUuWKBnlVCaxoBE4RlRGMqRZ4bNCc8kypUyzCX58nJyfi_Fo9NC9hbmZ8qpK7u7E7L-yGv4Bs_Hp7F-wuycKP-AbmA4jsB3GP2L8tmt5Akd3Op3TcYP9y-DwInKQjmECaIsSmdVhKA8RDE5PgFna-J62dPPQax33Vs5cLhiS-fzbTjXBah1Apk_QDyCJW5PaIAVOdIs5Ll33WI5tmU8uZUVhH7QD1le9dThopyVma0ymti0XuMUL3bTlBEQLdJvJBW02pXSlcV3aAmLUDuLq0paouVRtrZBRd0GA9RCEbRjX6WacOZDCcKBqfVtk2Flt3_b6WTYIQcTxkcOshhDkitp1_LAlPh_X3l6yiT1SEWIkpJFaCilSSE2FTbzBhSWskGcBjwXq06P7QXaPgSMbJ_ZeHAl8X17CIz9o7dZgI5T-2bTz6-4u3rg4py_JmotNvE0rU6_ISFevycqhvH1D9n4vVd5AqrxeqjyQKm8gVd5Cqt6Ss92d06196npw0BwrOVLFpCg4B6cST60qYhnie5Vc-r6IGD67ZonQCQe3puBSZUGYMWz-rFTmZ4XQ4TuyWtWVfk88jtGGZlpkGIP7YRLlUkLAIQPsbBlE6-RrtyPpzJZaSZ_a_nUilrYsdUfw6sk5Hcs-_MPcj-TFQpg_kdXrptWfyfP8Bnax-WJk4Be-epUS |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentially-Private+Multi-Party+Sketching+for+Large-Scale+Statistics&rft.jtitle=Proceedings+on+Privacy+Enhancing+Technologies&rft.au=Choi%2C+Seung+Geol&rft.au=Dachman-soled%2C+Dana&rft.au=Kulkarni%2C+Mukul&rft.au=Yerukhimovich%2C+Arkady&rft.date=2020-07-01&rft.pub=Sciendo&rft.eissn=2299-0984&rft.volume=2020&rft.issue=3&rft.spage=153&rft.epage=174&rft_id=info:doi/10.2478%2Fpopets-2020-0047&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_popets_2020_004720203153 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2299-0984&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2299-0984&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2299-0984&client=summon |