Differentially-Private Multi-Party Sketching for Large-Scale Statistics

We consider a scenario where multiple organizations holding large amounts of sensitive data from their users wish to compute aggregate statistics on this data while protecting the privacy of individual users. To support large-scale analytics we investigate how this privacy can be provided for the ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings on Privacy Enhancing Technologies Jg. 2020; H. 3; S. 153 - 174
Hauptverfasser: Choi, Seung Geol, Dachman-soled, Dana, Kulkarni, Mukul, Yerukhimovich, Arkady
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Sciendo 01.07.2020
Schlagworte:
ISSN:2299-0984, 2299-0984
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We consider a scenario where multiple organizations holding large amounts of sensitive data from their users wish to compute aggregate statistics on this data while protecting the privacy of individual users. To support large-scale analytics we investigate how this privacy can be provided for the case of sketching algorithms running in time sub-linear of the input size. We begin with the well-known LogLog sketch for computing the number of unique elements in a data stream. We show that this algorithm already achieves differential privacy (even without adding any noise) when computed using a private hash function by a trusted curator. Next, we show how to eliminate this requirement of a private hash function by injecting a small amount of noise, allowing us to instantiate an efficient LogLog protocol for the multi-party setting. To demonstrate the practicality of this approach, we run extensive experimentation on multiple data sets, including the publicly available IP address data set from University of Michigan’s scans of internet IPv4 space, to determine the trade-offs among efficiency, privacy and accuracy of our implementation for varying numbers of parties and input sizes. Finally, we generalize our approach for the LogLog sketch and obtain a general framework for constructing multi-party differentially private protocols for several other sketching algorithms.
AbstractList We consider a scenario where multiple organizations holding large amounts of sensitive data from their users wish to compute aggregate statistics on this data while protecting the privacy of individual users. To support large-scale analytics we investigate how this privacy can be provided for the case of sketching algorithms running in time sub-linear of the input size. We begin with the well-known LogLog sketch for computing the number of unique elements in a data stream. We show that this algorithm already achieves differential privacy (even without adding any noise) when computed using a private hash function by a trusted curator. Next, we show how to eliminate this requirement of a private hash function by injecting a small amount of noise, allowing us to instantiate an efficient LogLog protocol for the multi-party setting. To demonstrate the practicality of this approach, we run extensive experimentation on multiple data sets, including the publicly available IP address data set from University of Michigan’s scans of internet IPv4 space, to determine the trade-offs among efficiency, privacy and accuracy of our implementation for varying numbers of parties and input sizes. Finally, we generalize our approach for the LogLog sketch and obtain a general framework for constructing multi-party differentially private protocols for several other sketching algorithms.
Author Yerukhimovich, Arkady
Kulkarni, Mukul
Choi, Seung Geol
Dachman-soled, Dana
Author_xml – sequence: 1
  givenname: Seung Geol
  surname: Choi
  fullname: Choi, Seung Geol
  email: choi@usna.edu
  organization: United States Naval Academy
– sequence: 2
  givenname: Dana
  surname: Dachman-soled
  fullname: Dachman-soled, Dana
  email: danadach@ece.umd.edu
  organization: University of Maryland, Colleage Park
– sequence: 3
  givenname: Mukul
  surname: Kulkarni
  fullname: Kulkarni, Mukul
  email: mukul@cs.umass.edu
  organization: University of MassachusettsAmherst
– sequence: 4
  givenname: Arkady
  surname: Yerukhimovich
  fullname: Yerukhimovich, Arkady
  email: arkady@gwu.edu
  organization: George Washington University
BookMark eNp1kD1PwzAQQC1UJErpzpg_YLiznQ9voAIFqYhKhTlyYru4hKSyXVD-PYnKwMJ0b7h3Or1zMmm71hByiXDFRF5c77u9iYEyYEABRH5CpoxJSUEWYvKHz8g8hB0AYJYipsWULO-ctcabNjrVND1de_elokmeD010dK187JPNh4n1u2u3ie18slJ-a-imVo1JNlFFF6KrwwU5taoJZv47Z-Tt4f518UhXL8unxe2K1iiAU50pafNcImSV1tqmiiMUaa0QpchAyjwrpClywYY1pSvGqwxFilpXWFlp-IzA8W7tuxC8seXeu0_l-xKhHFuUxxbl2KIcWwzKzVH5Vk00XputP_QDlLvu4Nvh2X_VETimnP8A5Xpqig
Cites_doi 10.1109/SP40000.2020.00016
10.1145/380752.380850
10.1109/ICDE.2006.44
10.1137/060673096
10.1145/3319535.3345650
10.46298/dmtcs.3545
10.1145/1147954.1147955
10.1137/1.9781611973075.92
10.1007/978-3-540-30576-7_17
10.1145/1340771.1340773
10.1201/9781420010756
10.1007/978-3-319-19962-7_24
10.1109/FOCS.2006.37
10.1145/2452376.2452456
10.1007/978-3-662-43936-4_26
10.1145/28395.28420
10.1109/FOCS.2018.00058
10.1109/FOCS.2012.67
10.1145/2504730.2504755
10.1007/11761679_29
10.1090/conm/026/737400
10.1145/2488608.2488652
10.1016/0022-0000(85)90041-8
10.14778/3291264.3291274
10.1109/TDSC.2015.2423675
10.2478/popets-2019-0018
10.1109/TIFS.2017.2721360
10.1145/1159892.1159900
10.1145/1007352.1007372
10.1145/3146549
10.1515/popets-2018-0010
10.1137/130949117
10.1007/978-3-540-85174-5_25
10.1145/1060590.1060621
10.1561/0400000042
10.1561/3300000019
10.1145/2902251.2902291
10.1145/237814.237827
10.1016/S0304-3975(03)00400-6
10.1006/jcss.1997.1545
10.1145/276698.276876
10.1145/3133956.3134034
10.1109/FOCS.2007.66
10.1137/08074489X
10.1007/978-3-540-39658-1_55
10.1109/FOCS.2008.27
10.1007/978-3-642-03356-8_8
10.1145/2976749.2978310
10.1016/j.jalgor.2003.12.001
10.1007/11681878_14
10.14722/ndss.2016.23175
10.21236/ADA465464
10.1007/s00211-010-0331-6
10.1007/11841036_16
10.1016/j.comnet.2013.05.011
10.1007/3-540-45726-7_1
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.2478/popets-2020-0047
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Law
EISSN 2299-0984
EndPage 174
ExternalDocumentID 10_2478_popets_2020_0047
10_2478_popets_2020_004720203153
GroupedDBID 5VS
ACGFS
ADBBV
ADBLJ
ALMA_UNASSIGNED_HOLDINGS
BCNDV
KQ8
M~E
OK1
AAYXX
CITATION
ID FETCH-LOGICAL-c1403-d6a9f779106bdddf5a31085ca119460997689e87429f7adb23b61451ddb1bf9e3
ISSN 2299-0984
IngestDate Sat Oct 25 08:35:23 EDT 2025
Thu Jul 10 10:37:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
http://creativecommons.org/licenses/by-nc-nd/3.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1403-d6a9f779106bdddf5a31085ca119460997689e87429f7adb23b61451ddb1bf9e3
OpenAccessLink https://www.degruyter.com/doi/10.2478/popets-2020-0047
PageCount 22
ParticipantIDs crossref_primary_10_2478_popets_2020_0047
walterdegruyter_journals_10_2478_popets_2020_004720203153
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings on Privacy Enhancing Technologies
PublicationYear 2020
Publisher Sciendo
Publisher_xml – name: Sciendo
References 2022042407321718130_j_popets-2020-0047_ref_035_w2aab3b7c12b1b6b1ab1ac35Aa
2022042407321718130_j_popets-2020-0047_ref_017_w2aab3b7c12b1b6b1ab1ac17Aa
2022042407321718130_j_popets-2020-0047_ref_066_w2aab3b7c12b1b6b1ab1ac66Aa
2022042407321718130_j_popets-2020-0047_ref_048_w2aab3b7c12b1b6b1ab1ac48Aa
2022042407321718130_j_popets-2020-0047_ref_030_w2aab3b7c12b1b6b1ab1ac30Aa
2022042407321718130_j_popets-2020-0047_ref_012_w2aab3b7c12b1b6b1ab1ac12Aa
2022042407321718130_j_popets-2020-0047_ref_061_w2aab3b7c12b1b6b1ab1ac61Aa
2022042407321718130_j_popets-2020-0047_ref_005_w2aab3b7c12b1b6b1ab1ab5Aa
2022042407321718130_j_popets-2020-0047_ref_043_w2aab3b7c12b1b6b1ab1ac43Aa
2022042407321718130_j_popets-2020-0047_ref_025_w2aab3b7c12b1b6b1ab1ac25Aa
2022042407321718130_j_popets-2020-0047_ref_056_w2aab3b7c12b1b6b1ab1ac56Aa
2022042407321718130_j_popets-2020-0047_ref_038_w2aab3b7c12b1b6b1ab1ac38Aa
2022042407321718130_j_popets-2020-0047_ref_069_w2aab3b7c12b1b6b1ab1ac69Aa
2022042407321718130_j_popets-2020-0047_ref_020_w2aab3b7c12b1b6b1ab1ac20Aa
2022042407321718130_j_popets-2020-0047_ref_051_w2aab3b7c12b1b6b1ab1ac51Aa
2022042407321718130_j_popets-2020-0047_ref_033_w2aab3b7c12b1b6b1ab1ac33Aa
2022042407321718130_j_popets-2020-0047_ref_015_w2aab3b7c12b1b6b1ab1ac15Aa
2022042407321718130_j_popets-2020-0047_ref_064_w2aab3b7c12b1b6b1ab1ac64Aa
2022042407321718130_j_popets-2020-0047_ref_046_w2aab3b7c12b1b6b1ab1ac46Aa
2022042407321718130_j_popets-2020-0047_ref_028_w2aab3b7c12b1b6b1ab1ac28Aa
2022042407321718130_j_popets-2020-0047_ref_059_w2aab3b7c12b1b6b1ab1ac59Aa
2022042407321718130_j_popets-2020-0047_ref_007_w2aab3b7c12b1b6b1ab1ab7Aa
2022042407321718130_j_popets-2020-0047_ref_008_w2aab3b7c12b1b6b1ab1ab8Aa
2022042407321718130_j_popets-2020-0047_ref_050_w2aab3b7c12b1b6b1ab1ac50Aa
2022042407321718130_j_popets-2020-0047_ref_032_w2aab3b7c12b1b6b1ab1ac32Aa
2022042407321718130_j_popets-2020-0047_ref_014_w2aab3b7c12b1b6b1ab1ac14Aa
2022042407321718130_j_popets-2020-0047_ref_063_w2aab3b7c12b1b6b1ab1ac63Aa
2022042407321718130_j_popets-2020-0047_ref_045_w2aab3b7c12b1b6b1ab1ac45Aa
2022042407321718130_j_popets-2020-0047_ref_027_w2aab3b7c12b1b6b1ab1ac27Aa
2022042407321718130_j_popets-2020-0047_ref_002_w2aab3b7c12b1b6b1ab1ab2Aa
2022042407321718130_j_popets-2020-0047_ref_058_w2aab3b7c12b1b6b1ab1ac58Aa
2022042407321718130_j_popets-2020-0047_ref_031_w2aab3b7c12b1b6b1ab1ac31Aa
2022042407321718130_j_popets-2020-0047_ref_013_w2aab3b7c12b1b6b1ab1ac13Aa
2022042407321718130_j_popets-2020-0047_ref_062_w2aab3b7c12b1b6b1ab1ac62Aa
2022042407321718130_j_popets-2020-0047_ref_044_w2aab3b7c12b1b6b1ab1ac44Aa
2022042407321718130_j_popets-2020-0047_ref_026_w2aab3b7c12b1b6b1ab1ac26Aa
2022042407321718130_j_popets-2020-0047_ref_001_w2aab3b7c12b1b6b1ab1ab1Aa
2022042407321718130_j_popets-2020-0047_ref_057_w2aab3b7c12b1b6b1ab1ac57Aa
2022042407321718130_j_popets-2020-0047_ref_039_w2aab3b7c12b1b6b1ab1ac39Aa
2022042407321718130_j_popets-2020-0047_ref_021_w2aab3b7c12b1b6b1ab1ac21Aa
2022042407321718130_j_popets-2020-0047_ref_070_w2aab3b7c12b1b6b1ab1ac70Aa
2022042407321718130_j_popets-2020-0047_ref_052_w2aab3b7c12b1b6b1ab1ac52Aa
2022042407321718130_j_popets-2020-0047_ref_034_w2aab3b7c12b1b6b1ab1ac34Aa
2022042407321718130_j_popets-2020-0047_ref_016_w2aab3b7c12b1b6b1ab1ac16Aa
2022042407321718130_j_popets-2020-0047_ref_065_w2aab3b7c12b1b6b1ab1ac65Aa
2022042407321718130_j_popets-2020-0047_ref_047_w2aab3b7c12b1b6b1ab1ac47Aa
2022042407321718130_j_popets-2020-0047_ref_029_w2aab3b7c12b1b6b1ab1ac29Aa
2022042407321718130_j_popets-2020-0047_ref_004_w2aab3b7c12b1b6b1ab1ab4Aa
2022042407321718130_j_popets-2020-0047_ref_011_w2aab3b7c12b1b6b1ab1ac11Aa
2022042407321718130_j_popets-2020-0047_ref_060_w2aab3b7c12b1b6b1ab1ac60Aa
2022042407321718130_j_popets-2020-0047_ref_042_w2aab3b7c12b1b6b1ab1ac42Aa
2022042407321718130_j_popets-2020-0047_ref_024_w2aab3b7c12b1b6b1ab1ac24Aa
2022042407321718130_j_popets-2020-0047_ref_055_w2aab3b7c12b1b6b1ab1ac55Aa
2022042407321718130_j_popets-2020-0047_ref_037_w2aab3b7c12b1b6b1ab1ac37Aa
2022042407321718130_j_popets-2020-0047_ref_019_w2aab3b7c12b1b6b1ab1ac19Aa
2022042407321718130_j_popets-2020-0047_ref_003_w2aab3b7c12b1b6b1ab1ab3Aa
2022042407321718130_j_popets-2020-0047_ref_068_w2aab3b7c12b1b6b1ab1ac68Aa
2022042407321718130_j_popets-2020-0047_ref_010_w2aab3b7c12b1b6b1ab1ac10Aa
2022042407321718130_j_popets-2020-0047_ref_041_w2aab3b7c12b1b6b1ab1ac41Aa
2022042407321718130_j_popets-2020-0047_ref_023_w2aab3b7c12b1b6b1ab1ac23Aa
2022042407321718130_j_popets-2020-0047_ref_054_w2aab3b7c12b1b6b1ab1ac54Aa
2022042407321718130_j_popets-2020-0047_ref_036_w2aab3b7c12b1b6b1ab1ac36Aa
2022042407321718130_j_popets-2020-0047_ref_018_w2aab3b7c12b1b6b1ab1ac18Aa
2022042407321718130_j_popets-2020-0047_ref_067_w2aab3b7c12b1b6b1ab1ac67Aa
2022042407321718130_j_popets-2020-0047_ref_049_w2aab3b7c12b1b6b1ab1ac49Aa
2022042407321718130_j_popets-2020-0047_ref_006_w2aab3b7c12b1b6b1ab1ab6Aa
2022042407321718130_j_popets-2020-0047_ref_009_w2aab3b7c12b1b6b1ab1ab9Aa
2022042407321718130_j_popets-2020-0047_ref_040_w2aab3b7c12b1b6b1ab1ac40Aa
2022042407321718130_j_popets-2020-0047_ref_022_w2aab3b7c12b1b6b1ab1ac22Aa
2022042407321718130_j_popets-2020-0047_ref_053_w2aab3b7c12b1b6b1ab1ac53Aa
References_xml – ident: 2022042407321718130_j_popets-2020-0047_ref_038_w2aab3b7c12b1b6b1ab1ac38Aa
  doi: 10.1109/SP40000.2020.00016
– ident: 2022042407321718130_j_popets-2020-0047_ref_039_w2aab3b7c12b1b6b1ab1ac39Aa
  doi: 10.1145/380752.380850
– ident: 2022042407321718130_j_popets-2020-0047_ref_058_w2aab3b7c12b1b6b1ab1ac58Aa
  doi: 10.1109/ICDE.2006.44
– ident: 2022042407321718130_j_popets-2020-0047_ref_024_w2aab3b7c12b1b6b1ab1ac24Aa
– ident: 2022042407321718130_j_popets-2020-0047_ref_030_w2aab3b7c12b1b6b1ab1ac30Aa
– ident: 2022042407321718130_j_popets-2020-0047_ref_003_w2aab3b7c12b1b6b1ab1ab3Aa
  doi: 10.1137/060673096
– ident: 2022042407321718130_j_popets-2020-0047_ref_069_w2aab3b7c12b1b6b1ab1ac69Aa
  doi: 10.1145/3319535.3345650
– ident: 2022042407321718130_j_popets-2020-0047_ref_034_w2aab3b7c12b1b6b1ab1ac34Aa
  doi: 10.46298/dmtcs.3545
– ident: 2022042407321718130_j_popets-2020-0047_ref_041_w2aab3b7c12b1b6b1ab1ac41Aa
  doi: 10.1145/1147954.1147955
– ident: 2022042407321718130_j_popets-2020-0047_ref_054_w2aab3b7c12b1b6b1ab1ac54Aa
  doi: 10.1137/1.9781611973075.92
– ident: 2022042407321718130_j_popets-2020-0047_ref_036_w2aab3b7c12b1b6b1ab1ac36Aa
  doi: 10.1007/978-3-540-30576-7_17
– ident: 2022042407321718130_j_popets-2020-0047_ref_055_w2aab3b7c12b1b6b1ab1ac55Aa
  doi: 10.1145/1340771.1340773
– ident: 2022042407321718130_j_popets-2020-0047_ref_048_w2aab3b7c12b1b6b1ab1ac48Aa
  doi: 10.1201/9781420010756
– ident: 2022042407321718130_j_popets-2020-0047_ref_028_w2aab3b7c12b1b6b1ab1ac28Aa
  doi: 10.1007/978-3-319-19962-7_24
– ident: 2022042407321718130_j_popets-2020-0047_ref_062_w2aab3b7c12b1b6b1ab1ac62Aa
– ident: 2022042407321718130_j_popets-2020-0047_ref_059_w2aab3b7c12b1b6b1ab1ac59Aa
  doi: 10.1109/FOCS.2006.37
– ident: 2022042407321718130_j_popets-2020-0047_ref_049_w2aab3b7c12b1b6b1ab1ac49Aa
– ident: 2022042407321718130_j_popets-2020-0047_ref_040_w2aab3b7c12b1b6b1ab1ac40Aa
  doi: 10.1145/2452376.2452456
– ident: 2022042407321718130_j_popets-2020-0047_ref_006_w2aab3b7c12b1b6b1ab1ab6Aa
– ident: 2022042407321718130_j_popets-2020-0047_ref_007_w2aab3b7c12b1b6b1ab1ab7Aa
  doi: 10.1007/978-3-662-43936-4_26
– ident: 2022042407321718130_j_popets-2020-0047_ref_037_w2aab3b7c12b1b6b1ab1ac37Aa
  doi: 10.1145/28395.28420
– ident: 2022042407321718130_j_popets-2020-0047_ref_045_w2aab3b7c12b1b6b1ab1ac45Aa
  doi: 10.1109/FOCS.2018.00058
– ident: 2022042407321718130_j_popets-2020-0047_ref_002_w2aab3b7c12b1b6b1ab1ab2Aa
– ident: 2022042407321718130_j_popets-2020-0047_ref_014_w2aab3b7c12b1b6b1ab1ac14Aa
  doi: 10.1109/FOCS.2012.67
– ident: 2022042407321718130_j_popets-2020-0047_ref_023_w2aab3b7c12b1b6b1ab1ac23Aa
  doi: 10.1145/2504730.2504755
– ident: 2022042407321718130_j_popets-2020-0047_ref_060_w2aab3b7c12b1b6b1ab1ac60Aa
– ident: 2022042407321718130_j_popets-2020-0047_ref_025_w2aab3b7c12b1b6b1ab1ac25Aa
  doi: 10.1007/11761679_29
– ident: 2022042407321718130_j_popets-2020-0047_ref_046_w2aab3b7c12b1b6b1ab1ac46Aa
  doi: 10.1090/conm/026/737400
– ident: 2022042407321718130_j_popets-2020-0047_ref_057_w2aab3b7c12b1b6b1ab1ac57Aa
  doi: 10.1145/2488608.2488652
– ident: 2022042407321718130_j_popets-2020-0047_ref_068_w2aab3b7c12b1b6b1ab1ac68Aa
– ident: 2022042407321718130_j_popets-2020-0047_ref_035_w2aab3b7c12b1b6b1ab1ac35Aa
  doi: 10.1016/0022-0000(85)90041-8
– ident: 2022042407321718130_j_popets-2020-0047_ref_009_w2aab3b7c12b1b6b1ab1ab9Aa
  doi: 10.14778/3291264.3291274
– ident: 2022042407321718130_j_popets-2020-0047_ref_050_w2aab3b7c12b1b6b1ab1ac50Aa
  doi: 10.1109/TDSC.2015.2423675
– ident: 2022042407321718130_j_popets-2020-0047_ref_018_w2aab3b7c12b1b6b1ab1ac18Aa
  doi: 10.2478/popets-2019-0018
– ident: 2022042407321718130_j_popets-2020-0047_ref_020_w2aab3b7c12b1b6b1ab1ac20Aa
  doi: 10.1109/TIFS.2017.2721360
– ident: 2022042407321718130_j_popets-2020-0047_ref_032_w2aab3b7c12b1b6b1ab1ac32Aa
  doi: 10.1145/1159892.1159900
– ident: 2022042407321718130_j_popets-2020-0047_ref_066_w2aab3b7c12b1b6b1ab1ac66Aa
– ident: 2022042407321718130_j_popets-2020-0047_ref_064_w2aab3b7c12b1b6b1ab1ac64Aa
  doi: 10.1145/1007352.1007372
– ident: 2022042407321718130_j_popets-2020-0047_ref_063_w2aab3b7c12b1b6b1ab1ac63Aa
  doi: 10.1145/3146549
– ident: 2022042407321718130_j_popets-2020-0047_ref_017_w2aab3b7c12b1b6b1ab1ac17Aa
– ident: 2022042407321718130_j_popets-2020-0047_ref_004_w2aab3b7c12b1b6b1ab1ab4Aa
  doi: 10.1515/popets-2018-0010
– ident: 2022042407321718130_j_popets-2020-0047_ref_010_w2aab3b7c12b1b6b1ab1ac10Aa
  doi: 10.1137/130949117
– ident: 2022042407321718130_j_popets-2020-0047_ref_001_w2aab3b7c12b1b6b1ab1ab1Aa
– ident: 2022042407321718130_j_popets-2020-0047_ref_011_w2aab3b7c12b1b6b1ab1ac11Aa
  doi: 10.1007/978-3-540-85174-5_25
– ident: 2022042407321718130_j_popets-2020-0047_ref_043_w2aab3b7c12b1b6b1ab1ac43Aa
  doi: 10.1145/1060590.1060621
– ident: 2022042407321718130_j_popets-2020-0047_ref_027_w2aab3b7c12b1b6b1ab1ac27Aa
  doi: 10.1561/0400000042
– ident: 2022042407321718130_j_popets-2020-0047_ref_031_w2aab3b7c12b1b6b1ab1ac31Aa
  doi: 10.1561/3300000019
– ident: 2022042407321718130_j_popets-2020-0047_ref_061_w2aab3b7c12b1b6b1ab1ac61Aa
  doi: 10.1145/2902251.2902291
– ident: 2022042407321718130_j_popets-2020-0047_ref_012_w2aab3b7c12b1b6b1ab1ac12Aa
  doi: 10.1145/237814.237827
– ident: 2022042407321718130_j_popets-2020-0047_ref_015_w2aab3b7c12b1b6b1ab1ac15Aa
  doi: 10.1016/S0304-3975(03)00400-6
– ident: 2022042407321718130_j_popets-2020-0047_ref_005_w2aab3b7c12b1b6b1ab1ab5Aa
  doi: 10.1006/jcss.1997.1545
– ident: 2022042407321718130_j_popets-2020-0047_ref_042_w2aab3b7c12b1b6b1ab1ac42Aa
  doi: 10.1145/276698.276876
– ident: 2022042407321718130_j_popets-2020-0047_ref_033_w2aab3b7c12b1b6b1ab1ac33Aa
  doi: 10.1145/3133956.3134034
– ident: 2022042407321718130_j_popets-2020-0047_ref_051_w2aab3b7c12b1b6b1ab1ac51Aa
  doi: 10.1109/FOCS.2007.66
– ident: 2022042407321718130_j_popets-2020-0047_ref_065_w2aab3b7c12b1b6b1ab1ac65Aa
  doi: 10.1137/08074489X
– ident: 2022042407321718130_j_popets-2020-0047_ref_029_w2aab3b7c12b1b6b1ab1ac29Aa
– ident: 2022042407321718130_j_popets-2020-0047_ref_022_w2aab3b7c12b1b6b1ab1ac22Aa
  doi: 10.1007/978-3-540-39658-1_55
– ident: 2022042407321718130_j_popets-2020-0047_ref_056_w2aab3b7c12b1b6b1ab1ac56Aa
– ident: 2022042407321718130_j_popets-2020-0047_ref_047_w2aab3b7c12b1b6b1ab1ac47Aa
  doi: 10.1109/FOCS.2008.27
– ident: 2022042407321718130_j_popets-2020-0047_ref_053_w2aab3b7c12b1b6b1ab1ac53Aa
  doi: 10.1007/978-3-642-03356-8_8
– ident: 2022042407321718130_j_popets-2020-0047_ref_044_w2aab3b7c12b1b6b1ab1ac44Aa
  doi: 10.1145/2976749.2978310
– ident: 2022042407321718130_j_popets-2020-0047_ref_016_w2aab3b7c12b1b6b1ab1ac16Aa
  doi: 10.1016/j.jalgor.2003.12.001
– ident: 2022042407321718130_j_popets-2020-0047_ref_070_w2aab3b7c12b1b6b1ab1ac70Aa
– ident: 2022042407321718130_j_popets-2020-0047_ref_026_w2aab3b7c12b1b6b1ab1ac26Aa
  doi: 10.1007/11681878_14
– ident: 2022042407321718130_j_popets-2020-0047_ref_052_w2aab3b7c12b1b6b1ab1ac52Aa
  doi: 10.14722/ndss.2016.23175
– ident: 2022042407321718130_j_popets-2020-0047_ref_019_w2aab3b7c12b1b6b1ab1ac19Aa
  doi: 10.21236/ADA465464
– ident: 2022042407321718130_j_popets-2020-0047_ref_021_w2aab3b7c12b1b6b1ab1ac21Aa
  doi: 10.1007/s00211-010-0331-6
– ident: 2022042407321718130_j_popets-2020-0047_ref_013_w2aab3b7c12b1b6b1ab1ac13Aa
  doi: 10.1007/11841036_16
– ident: 2022042407321718130_j_popets-2020-0047_ref_067_w2aab3b7c12b1b6b1ab1ac67Aa
  doi: 10.1016/j.comnet.2013.05.011
– ident: 2022042407321718130_j_popets-2020-0047_ref_008_w2aab3b7c12b1b6b1ab1ab8Aa
  doi: 10.1007/3-540-45726-7_1
SSID ssj0001651158
Score 2.1100276
Snippet We consider a scenario where multiple organizations holding large amounts of sensitive data from their users wish to compute aggregate statistics on this data...
SourceID crossref
walterdegruyter
SourceType Index Database
Publisher
StartPage 153
SubjectTerms differential privacy
secure computation
sketching algorithms
Title Differentially-Private Multi-Party Sketching for Large-Scale Statistics
URI https://www.degruyter.com/doi/10.2478/popets-2020-0047
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2299-0984
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001651158
  issn: 2299-0984
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBabtIdeQp80feFDL6WI-i3rGJK0hW7DQtKSnoxkyV3wxl6cOMle-rv68zojyV5naaCl9GKMQYPRfJoZjT7NEPJaZqGOYxFTxYqSxkwUVGh4Y8LnWkTMF6aLwtcpOzrKTk_5bDL52d-FuVywus6ur_nyv6oavoGy8ersX6h7EAof4B2UDk9QOzz_SPEHruUJLN3FYkVnLfYvg8WLzEE6gwFgLSpUVs-hnCIZnB6DsrSJPW3p5nHUOhu8nDlcMCKL1dvDeo7VOkDMkKAfURL3541hChzrDnNcuhm4HAeimJ-JmsI8aEesrwfv8KlbVJitMZnarlrzFr_ptqvmAC2wbSYXtNdWwpXGdWkL2KP2FFeXtkTLpRrrhYy5C0Osh8Btw7jeNuPIEQqjkakNbJFh57UD2-tn0yGEMcNLDssGtiDn1P6Hb0t83qy9veETB6Yi7JFQRm4l5CghNxU28QQXfmGL3AlZwtGefv4xyu6lEMgmmT0XRwHvNn_hRhy0c2W4EUp_b7vVRX8Wb0Kck_tkx-1NvD2LqQdkouuHZGsqrh6RD79HlTdClTegygNUeSNUeWtUPSZf3h-e7H-krgcHLbCSI1Wp4CVjEFSmUilVJiLC-yqFCAIep3jtOs24zhiENSUTSoaRTLH5s1IykCXX0ROyXTe1fko8PwlZIKNQqqSMwTJkiVQ8TmSgfJXIMtglb_oZyZe21Ep-2_TvEr4xZblbgue3julV9uwfxj4n99ZgfkG2L9pOvyR3i0uYxfaVwcAvlL-WKw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentially-Private+Multi-Party+Sketching+for+Large-Scale+Statistics&rft.jtitle=Proceedings+on+Privacy+Enhancing+Technologies&rft.au=Choi%2C+Seung+Geol&rft.au=Dachman-soled%2C+Dana&rft.au=Kulkarni%2C+Mukul&rft.au=Yerukhimovich%2C+Arkady&rft.date=2020-07-01&rft.pub=Sciendo&rft.eissn=2299-0984&rft.volume=2020&rft.issue=3&rft.spage=153&rft.epage=174&rft_id=info:doi/10.2478%2Fpopets-2020-0047&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_popets_2020_004720203153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2299-0984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2299-0984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2299-0984&client=summon