An In-depth Benchmarking of Evolutionary and Swarm Intelligence Algorithms for Autoscaling Parameter Sweep Applications on Public Clouds
Many important computational applications in science, engineering, industry, and technology are represented by PSE (parameter sweep experiment) applications. These applications involve a large number of resource-intensive and independent computational tasks. Because of this, cloud autoscaling approa...
Uloženo v:
| Vydáno v: | Scientific programming Ročník 2023; s. 1 - 26 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Hindawi
17.02.2023
John Wiley & Sons, Inc |
| Témata: | |
| ISSN: | 1058-9244, 1875-919X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Many important computational applications in science, engineering, industry, and technology are represented by PSE (parameter sweep experiment) applications. These applications involve a large number of resource-intensive and independent computational tasks. Because of this, cloud autoscaling approaches have been proposed to execute PSE applications on public cloud environments that offer instances of different VM (virtual machine) types, under a pay-per-use scheme, to execute diverse applications. One of the most recent approaches is the autoscaler MOEA (multiobjective evolutive algorithm), which is based on the multiobjective evolutionary algorithm NSGA-II (nondominated sorting genetic algorithm II). MOEA considers on-demand and spot VM instances and three optimization objectives relevant for users: minimizing the computing time, monetary cost, and spot instance interruptions of the application’s execution. However, MOEA’s performance regarding these optimization objectives depends significantly on the optimization algorithm used. It has been shown recently that MOEA’s performance improves considerably when NSGA-II is replaced by a more recent algorithm named NSGA-III. In this paper, we analyze the incorporation of other multiobjective optimization algorithms into MOEA to enhance the performance of this autoscaler. First, we consider three multiobjective optimization algorithms named E-NSGA-III (extreme NSGA-III), SMS-EMOA (S-metric selection evolutionary multiobjective optimization algorithm), and SMPSO (speed-constrained multiobjective particle swarm optimization), which have behavioral differences with NSGA-III. Then, we evaluate the performance of MOEA with each of these algorithms, considering the three optimization objectives, on four real-world PSE applications from the meteorology and molecular dynamics areas, considering different application sizes. To do that, we use the well-known CloudSim simulator and consider different VM types available in Amazon EC2. Finally, we analyze the obtained performance results, which show that MOEA with E-NSGA-III arises as the best alternative, reaching better and significant savings in terms of computing time (10%–17%), monetary cost (10%–40%), and spot instance interruptions (33%–100%). |
|---|---|
| AbstractList | Many important computational applications in science, engineering, industry, and technology are represented by PSE (parameter sweep experiment) applications. These applications involve a large number of resource-intensive and independent computational tasks. Because of this, cloud autoscaling approaches have been proposed to execute PSE applications on public cloud environments that offer instances of different VM (virtual machine) types, under a pay-per-use scheme, to execute diverse applications. One of the most recent approaches is the autoscaler MOEA (multiobjective evolutive algorithm), which is based on the multiobjective evolutionary algorithm NSGA-II (nondominated sorting genetic algorithm II). MOEA considers on-demand and spot VM instances and three optimization objectives relevant for users: minimizing the computing time, monetary cost, and spot instance interruptions of the application’s execution. However, MOEA’s performance regarding these optimization objectives depends significantly on the optimization algorithm used. It has been shown recently that MOEA’s performance improves considerably when NSGA-II is replaced by a more recent algorithm named NSGA-III. In this paper, we analyze the incorporation of other multiobjective optimization algorithms into MOEA to enhance the performance of this autoscaler. First, we consider three multiobjective optimization algorithms named E-NSGA-III (extreme NSGA-III), SMS-EMOA (S-metric selection evolutionary multiobjective optimization algorithm), and SMPSO (speed-constrained multiobjective particle swarm optimization), which have behavioral differences with NSGA-III. Then, we evaluate the performance of MOEA with each of these algorithms, considering the three optimization objectives, on four real-world PSE applications from the meteorology and molecular dynamics areas, considering different application sizes. To do that, we use the well-known CloudSim simulator and consider different VM types available in Amazon EC2. Finally, we analyze the obtained performance results, which show that MOEA with E-NSGA-III arises as the best alternative, reaching better and significant savings in terms of computing time (10%–17%), monetary cost (10%–40%), and spot instance interruptions (33%–100%). |
| Author | Yannibelli, Virginia Monge, David A. Rodriguez, Guillermo Mateos, Cristian Millán, Emmanuel Santos, Jorge R. Pacini, Elina |
| Author_xml | – sequence: 1 givenname: Virginia orcidid: 0000-0001-7854-7610 surname: Yannibelli fullname: Yannibelli, Virginia organization: ISISTAN (UNICEN-CONICET)Tandil Buenos AiresArgentina – sequence: 2 givenname: Elina orcidid: 0000-0003-2882-766X surname: Pacini fullname: Pacini, Elina organization: ITICUNCuyoMendozaArgentinauncu.edu.ar – sequence: 3 givenname: David A. orcidid: 0000-0001-6444-4610 surname: Monge fullname: Monge, David A. organization: ITICUNCuyoMendozaArgentinauncu.edu.ar – sequence: 4 givenname: Cristian orcidid: 0000-0001-5761-1898 surname: Mateos fullname: Mateos, Cristian organization: ISISTAN (UNICEN-CONICET)Tandil Buenos AiresArgentina – sequence: 5 givenname: Guillermo orcidid: 0000-0003-4125-3998 surname: Rodriguez fullname: Rodriguez, Guillermo organization: ISISTAN (UNICEN-CONICET)Tandil Buenos AiresArgentina – sequence: 6 givenname: Emmanuel orcidid: 0000-0002-5666-8355 surname: Millán fullname: Millán, Emmanuel organization: ITICUNCuyoMendozaArgentinauncu.edu.ar – sequence: 7 givenname: Jorge R. orcidid: 0000-0002-2842-9891 surname: Santos fullname: Santos, Jorge R. organization: Facultad de Ciencias Exactas y NaturalesUNCuyoMendozaArgentinauncu.edu.ar |
| BookMark | eNp9kFFLwzAQx4MouE3f_AABH7UuaZs0faxj6mDgQAXfStZe18wuqUnr2DfwY5uyPft0d_C7_3G_MTrXRgNCN5Q8UMrYNCRhNBVRzHjMz9CIioQFKU0_z31PmAjSMI4v0di5LSFUUEJG6DfTeKGDEtquxo-gi3on7ZfSG2wqPP8xTd8po6U9YKlL_LaXduf5DppGbTwNOGs2xqqu3jlcGYuzvjOukM2QsJJW7qAD6_cAWpy1baMKOQQ6bDRe9Ws_41lj-tJdoYtKNg6uT3WCPp7m77OXYPn6vJhly6CgUcqDkLGYr-NElILTkCWSS8YljypWykqECfj3hSgKCCEtOROJlDSqYoiqlHDwdYJuj7mtNd89uC7fmt5qfzKPKEmSNCYR8dT9kSqscc5ClbdWeTOHnJJ8cJ0PrvOTa4_fHfFa6VLu1f_0H84VgSQ |
| Cites_doi | 10.1016/j.engappai.2021.104288 10.1016/j.future.2018.02.003 10.1016/j.future.2012.03.011 10.33383/2019-029 10.1016/j.compeleceng.2017.12.007 10.1016/j.parco.2015.02.003 10.1039/c5cp06153a 10.4149/cai_2018_4_815 10.1016/j.suscom.2022.100686 10.1007/978-3-662-44874-8 10.1007/s10922-017-9444-x 10.1016/j.advengsoft.2017.04.002 10.1039/d0cp04442c 10.1016/j.advengsoft.2017.10.004 10.1016/j.cam.2012.10.008 10.1016/j.ijrefrig.2016.06.010 10.1093/mnras/stab610 10.1006/jcph.1995.1039 10.1016/j.comcom.2020.02.010 10.1007/s10723-014-9314-7 10.1155/2020/4653204 10.1016/j.jss.2016.05.011 10.1016/j.sysarc.2017.07.002 10.1016/j.ifacol.2016.07.690 10.1186/s13677-017-0100-5 10.1016/j.sysarc.2022.102598 10.1007/s10462-016-9486-6 10.1016/j.future.2017.01.020 10.1016/j.suscom.2017.10.003 10.1109/tevc.2013.2281535 10.1016/j.ejor.2006.08.008 10.1214/aoms/1177730491 10.1109/4235.996017 10.1016/j.jnca.2019.102464 10.1016/j.future.2016.01.018 10.1061/(asce)0733-9399(2003)129:6(689) 10.1016/B978-0-12-809194-4.00022-3 10.1007/s10586-021-03265-9 10.1016/j.jnca.2016.03.001 10.1109/tsc.2018.2866421 10.1109/jsyst.2013.2256731 10.1007/s10586-020-03148-5 10.1016/j.cor.2016.09.010 10.1021/cr0680282 10.1007/s11036-018-0996-0 |
| ContentType | Journal Article |
| Copyright | Copyright © 2023 Virginia Yannibelli et al. Copyright © 2023 Virginia Yannibelli et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2023 Virginia Yannibelli et al. – notice: Copyright © 2023 Virginia Yannibelli et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1155/2023/8345646 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Technology Research Database |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1875-919X |
| Editor | Liu, Zhihan |
| Editor_xml | – sequence: 1 givenname: Zhihan surname: Liu fullname: Liu, Zhihan |
| EndPage | 26 |
| ExternalDocumentID | 10_1155_2023_8345646 |
| GroupedDBID | .4S .DC 0R~ 4.4 5VS AAFWJ AAJEY ABDBF ABJNI ACGFS ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BCNDV DU5 EAD EAP EBS EDO EMK EPL EST ESX GROUPED_DOAJ HZ~ I-F IAO IHR IOS KQ8 MIO MK~ ML~ MV1 NGNOM O9- OK1 RHU RHW RHX TUS 24P AAMMB AAYXX ACCMX AEFGJ AGXDD AIDQK AIDYY ALUQN CITATION H13 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c1396-25546b478d861257a6a56a63f5daf827e83488cce2e9d6587aa13f4e3f906e4e3 |
| IEDL.DBID | RHX |
| ISSN | 1058-9244 |
| IngestDate | Fri Jul 25 09:31:30 EDT 2025 Sat Nov 29 04:07:08 EST 2025 Sun Jun 02 19:18:07 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1396-25546b478d861257a6a56a63f5daf827e83488cce2e9d6587aa13f4e3f906e4e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2882-766X 0000-0002-2842-9891 0000-0001-5761-1898 0000-0001-7854-7610 0000-0001-6444-4610 0000-0002-5666-8355 0000-0003-4125-3998 |
| OpenAccessLink | https://dx.doi.org/10.1155/2023/8345646 |
| PQID | 3107794030 |
| PQPubID | 2046410 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_3107794030 crossref_primary_10_1155_2023_8345646 hindawi_primary_10_1155_2023_8345646 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-2-17 |
| PublicationDateYYYYMMDD | 2023-02-17 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-2-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Scientific programming |
| PublicationYear | 2023 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | 44 45 46 S. Lu (55) 49 P. Wangsom (19) W. C. Skamarock (37) 2021 50 51 52 10 54 11 12 13 57 14 58 15 59 17 P. Wangsom (26) J. Jeffers (36) 2016 H. Ishibuchi (16) 1 2 3 J. Chen (47) 2021; 33 4 5 6 7 8 9 60 61 20 V. Yannibelli (48) 2020 R. L. Snyder (35) 2005 23 24 25 M. Mao (56) 27 28 29 M. A. Netto (40) D. A. Monge (53) 2017; 32 J. Ericson (62) 30 31 33 34 38 A. J. Nebro (21) M. Mao (41) M. C. Silva Filho (22) K. Lavangnananda (18) A. E. Eiben (39) 2015 D. Rim (32) 2019; 48 42 43 |
| References_xml | – ident: 11 doi: 10.1016/j.engappai.2021.104288 – start-page: 249 volume-title: Advances in Soft Computing. MICAI 2020 year: 2020 ident: 48 article-title: An NSGA-III-based multiobjective intelligent autoscaler for executing engineering applications in cloud infrastructures – ident: 46 doi: 10.1016/j.future.2018.02.003 – ident: 3 doi: 10.1016/j.future.2012.03.011 – start-page: 3045 ident: 16 article-title: Performance comparison of nsga-ii and nsga-iii on various many-objective test problems – start-page: 187 ident: 40 article-title: Evaluating auto-scaling strategies for cloud computing environments – start-page: 1 ident: 41 article-title: Auto-scaling to minimize cost and meet application deadlines in cloud workflows – ident: 25 doi: 10.33383/2019-029 – volume: 33 year: 2021 ident: 47 article-title: Scheduling independent tasks in cloud environment based on modified differential evolution publication-title: Concurrency and Computation: Practice and Experience – ident: 12 doi: 10.1016/j.compeleceng.2017.12.007 – start-page: 400 ident: 22 article-title: CloudSim Plus: a cloud computing simulation framework pursuing software engineering principles for improved modularity, extensibility and correctness – ident: 54 doi: 10.1016/j.parco.2015.02.003 – ident: 30 doi: 10.1039/c5cp06153a – volume-title: A Description of the Advanced Research WRF Version 4.3 year: 2021 ident: 37 – ident: 34 doi: 10.4149/cai_2018_4_815 – ident: 60 doi: 10.1016/j.suscom.2022.100686 – volume-title: Introduction to Evolutionary Computing year: 2015 ident: 39 doi: 10.1007/978-3-662-44874-8 – ident: 6 doi: 10.1007/s10922-017-9444-x – start-page: 308 ident: 62 article-title: Analysis of performance variability in public cloud computing – volume-title: Frost Protection: Fundamentals, Practice and Economics, Volume 1 of Environment and Natural Resources Series year: 2005 ident: 35 – ident: 5 doi: 10.1016/j.advengsoft.2017.04.002 – ident: 27 doi: 10.1039/d0cp04442c – ident: 4 doi: 10.1016/j.advengsoft.2017.10.004 – ident: 1 doi: 10.1016/j.cam.2012.10.008 – ident: 33 doi: 10.1016/j.ijrefrig.2016.06.010 – ident: 31 doi: 10.1093/mnras/stab610 – ident: 29 doi: 10.1006/jcph.1995.1039 – ident: 9 doi: 10.1016/j.comcom.2020.02.010 – ident: 8 doi: 10.1007/s10723-014-9314-7 – ident: 14 doi: 10.1155/2020/4653204 – ident: 57 doi: 10.1016/j.jss.2016.05.011 – ident: 44 doi: 10.1016/j.sysarc.2017.07.002 – ident: 17 doi: 10.1016/j.ifacol.2016.07.690 – ident: 19 article-title: Extreme solutions NSGA-III (E-NSGA-III) for multiobjective constrained problems – ident: 51 doi: 10.1186/s13677-017-0100-5 – volume: 32 start-page: 291 issue: 4 year: 2017 ident: 53 article-title: Autoscaling scientific workflows on the cloud by combining on-demand and spot instances publication-title: Computer Systems Science and Engineering – start-page: 269 ident: 26 article-title: The application of nondominated sorting genetic algorithm (NSGA-III) for scientific-workflow scheduling on cloud – ident: 59 doi: 10.1016/j.sysarc.2022.102598 – ident: 24 doi: 10.1007/s10462-016-9486-6 – ident: 43 doi: 10.1016/j.future.2017.01.020 – ident: 52 doi: 10.1016/j.suscom.2017.10.003 – ident: 15 doi: 10.1109/tevc.2013.2281535 – start-page: 66 ident: 21 article-title: SMPSO: a new PSO-based metaheuristic for multiobjective optimization – ident: 20 doi: 10.1016/j.ejor.2006.08.008 – ident: 38 doi: 10.1214/aoms/1177730491 – ident: 13 doi: 10.1109/4235.996017 – ident: 58 doi: 10.1016/j.jnca.2019.102464 – ident: 42 doi: 10.1016/j.future.2016.01.018 – start-page: 657 ident: 55 article-title: A dynamic hybrid resource provisioning approach for running large-scale computational applications on cloud spot and on-demand instances – ident: 2 doi: 10.1061/(asce)0733-9399(2003)129:6(689) – start-page: 499 volume-title: Intel Xeon Phi Processor High Performance Programming year: 2016 ident: 36 article-title: Chapter 22: weather research and forecasting (WRF) doi: 10.1016/B978-0-12-809194-4.00022-3 – ident: 10 doi: 10.1007/s10586-021-03265-9 – start-page: 67 ident: 56 article-title: Scaling and scheduling to maximize application performance within budget constraints in cloud workflows – ident: 49 doi: 10.1016/j.jnca.2016.03.001 – ident: 61 doi: 10.1109/tsc.2018.2866421 – ident: 7 doi: 10.1109/jsyst.2013.2256731 – start-page: 17 ident: 18 article-title: Extreme solutions nsga-III (e-nsga-III) for scientific workflow scheduling on cloud – ident: 45 doi: 10.1007/s10586-020-03148-5 – volume: 48 year: 2019 ident: 32 article-title: Unsupervised machine learning algorithms as support tools in molecular dynamics simulations publication-title: Simposio Argentino de Inteligencia Artificial – ident: 23 doi: 10.1016/j.cor.2016.09.010 – ident: 28 doi: 10.1021/cr0680282 – ident: 50 doi: 10.1007/s11036-018-0996-0 |
| SSID | ssj0018100 |
| Score | 2.273343 |
| Snippet | Many important computational applications in science, engineering, industry, and technology are represented by PSE (parameter sweep experiment) applications.... |
| SourceID | proquest crossref hindawi |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Behavior Cloud computing Clouds Computing time Cost analysis Evolutionary algorithms Genetic algorithms Molecular dynamics Multiple objective analysis Optimization algorithms Parameters Particle swarm optimization Performance evaluation Software Sorting algorithms Swarm intelligence Virtual environments Workloads |
| Title | An In-depth Benchmarking of Evolutionary and Swarm Intelligence Algorithms for Autoscaling Parameter Sweep Applications on Public Clouds |
| URI | https://dx.doi.org/10.1155/2023/8345646 https://www.proquest.com/docview/3107794030 |
| Volume | 2023 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1875-919X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0018100 issn: 1058-9244 databaseCode: 24P dateStart: 19920101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sUfDiW6zWMod6DOa1yeYYi6WClOIDegub7MYWbFKStMV_4M92Ng_xcdBTSEg2MLMz883O8A0hfceMMap5tkap1DVb6FwLMQ3TqEdDbkQxDaupJffueMymU29SkyTlv0v4GO1Uem5dM0vxnjgt0mJUdW49jKafxQJm6BXpAEXbxXDV9Lf_-PZb5NmZqZR3M__lgsu4MjwgezUgBL_S4CHZkskR2W-GLUBte8fk3U_gLtGEXBYzuMFnswUvz7khjeF2Xe8gnr0BTwQ8bni2gLsvfJvgv76k2byYLXJAoAr-qkhzVJBaYcJVi1b5u42US_C_VLUhTaA624PBa7oS-Ql5Ht4-DUZaPUZBixDeOZqpGtFC22WCKTjjcodThztWTAWPmelKlA9jUSRN6QkEJC7nhhXb0oo93ZF4PSXtJE3kGQFEV4bBTamHiliQeaHgUrqUo1oFQgfWIVeNiINlxZYRlFkGpYFSRVCrokP6tfz_eK3bKCeoTSsPEI-66ETQOZ3_b5ULsqtuVau14XZJu8hW8pJsR-tinmc90jLtSa_cUB-DWcMz |
| linkProvider | Hindawi Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+In-depth+Benchmarking+of+Evolutionary+and+Swarm+Intelligence+Algorithms+for+Autoscaling+Parameter+Sweep+Applications+on+Public+Clouds&rft.jtitle=Scientific+programming&rft.au=Yannibelli%2C+Virginia&rft.au=Pacini%2C+Elina&rft.au=Monge%2C+David+A&rft.au=Mateos%2C+Cristian&rft.date=2023-02-17&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2023&rft_id=info:doi/10.1155%2F2023%2F8345646&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon |