An In-depth Benchmarking of Evolutionary and Swarm Intelligence Algorithms for Autoscaling Parameter Sweep Applications on Public Clouds

Many important computational applications in science, engineering, industry, and technology are represented by PSE (parameter sweep experiment) applications. These applications involve a large number of resource-intensive and independent computational tasks. Because of this, cloud autoscaling approa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific programming Ročník 2023; s. 1 - 26
Hlavní autoři: Yannibelli, Virginia, Pacini, Elina, Monge, David A., Mateos, Cristian, Rodriguez, Guillermo, Millán, Emmanuel, Santos, Jorge R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Hindawi 17.02.2023
John Wiley & Sons, Inc
Témata:
ISSN:1058-9244, 1875-919X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Many important computational applications in science, engineering, industry, and technology are represented by PSE (parameter sweep experiment) applications. These applications involve a large number of resource-intensive and independent computational tasks. Because of this, cloud autoscaling approaches have been proposed to execute PSE applications on public cloud environments that offer instances of different VM (virtual machine) types, under a pay-per-use scheme, to execute diverse applications. One of the most recent approaches is the autoscaler MOEA (multiobjective evolutive algorithm), which is based on the multiobjective evolutionary algorithm NSGA-II (nondominated sorting genetic algorithm II). MOEA considers on-demand and spot VM instances and three optimization objectives relevant for users: minimizing the computing time, monetary cost, and spot instance interruptions of the application’s execution. However, MOEA’s performance regarding these optimization objectives depends significantly on the optimization algorithm used. It has been shown recently that MOEA’s performance improves considerably when NSGA-II is replaced by a more recent algorithm named NSGA-III. In this paper, we analyze the incorporation of other multiobjective optimization algorithms into MOEA to enhance the performance of this autoscaler. First, we consider three multiobjective optimization algorithms named E-NSGA-III (extreme NSGA-III), SMS-EMOA (S-metric selection evolutionary multiobjective optimization algorithm), and SMPSO (speed-constrained multiobjective particle swarm optimization), which have behavioral differences with NSGA-III. Then, we evaluate the performance of MOEA with each of these algorithms, considering the three optimization objectives, on four real-world PSE applications from the meteorology and molecular dynamics areas, considering different application sizes. To do that, we use the well-known CloudSim simulator and consider different VM types available in Amazon EC2. Finally, we analyze the obtained performance results, which show that MOEA with E-NSGA-III arises as the best alternative, reaching better and significant savings in terms of computing time (10%–17%), monetary cost (10%–40%), and spot instance interruptions (33%–100%).
AbstractList Many important computational applications in science, engineering, industry, and technology are represented by PSE (parameter sweep experiment) applications. These applications involve a large number of resource-intensive and independent computational tasks. Because of this, cloud autoscaling approaches have been proposed to execute PSE applications on public cloud environments that offer instances of different VM (virtual machine) types, under a pay-per-use scheme, to execute diverse applications. One of the most recent approaches is the autoscaler MOEA (multiobjective evolutive algorithm), which is based on the multiobjective evolutionary algorithm NSGA-II (nondominated sorting genetic algorithm II). MOEA considers on-demand and spot VM instances and three optimization objectives relevant for users: minimizing the computing time, monetary cost, and spot instance interruptions of the application’s execution. However, MOEA’s performance regarding these optimization objectives depends significantly on the optimization algorithm used. It has been shown recently that MOEA’s performance improves considerably when NSGA-II is replaced by a more recent algorithm named NSGA-III. In this paper, we analyze the incorporation of other multiobjective optimization algorithms into MOEA to enhance the performance of this autoscaler. First, we consider three multiobjective optimization algorithms named E-NSGA-III (extreme NSGA-III), SMS-EMOA (S-metric selection evolutionary multiobjective optimization algorithm), and SMPSO (speed-constrained multiobjective particle swarm optimization), which have behavioral differences with NSGA-III. Then, we evaluate the performance of MOEA with each of these algorithms, considering the three optimization objectives, on four real-world PSE applications from the meteorology and molecular dynamics areas, considering different application sizes. To do that, we use the well-known CloudSim simulator and consider different VM types available in Amazon EC2. Finally, we analyze the obtained performance results, which show that MOEA with E-NSGA-III arises as the best alternative, reaching better and significant savings in terms of computing time (10%–17%), monetary cost (10%–40%), and spot instance interruptions (33%–100%).
Author Yannibelli, Virginia
Monge, David A.
Rodriguez, Guillermo
Mateos, Cristian
Millán, Emmanuel
Santos, Jorge R.
Pacini, Elina
Author_xml – sequence: 1
  givenname: Virginia
  orcidid: 0000-0001-7854-7610
  surname: Yannibelli
  fullname: Yannibelli, Virginia
  organization: ISISTAN (UNICEN-CONICET)Tandil Buenos AiresArgentina
– sequence: 2
  givenname: Elina
  orcidid: 0000-0003-2882-766X
  surname: Pacini
  fullname: Pacini, Elina
  organization: ITICUNCuyoMendozaArgentinauncu.edu.ar
– sequence: 3
  givenname: David A.
  orcidid: 0000-0001-6444-4610
  surname: Monge
  fullname: Monge, David A.
  organization: ITICUNCuyoMendozaArgentinauncu.edu.ar
– sequence: 4
  givenname: Cristian
  orcidid: 0000-0001-5761-1898
  surname: Mateos
  fullname: Mateos, Cristian
  organization: ISISTAN (UNICEN-CONICET)Tandil Buenos AiresArgentina
– sequence: 5
  givenname: Guillermo
  orcidid: 0000-0003-4125-3998
  surname: Rodriguez
  fullname: Rodriguez, Guillermo
  organization: ISISTAN (UNICEN-CONICET)Tandil Buenos AiresArgentina
– sequence: 6
  givenname: Emmanuel
  orcidid: 0000-0002-5666-8355
  surname: Millán
  fullname: Millán, Emmanuel
  organization: ITICUNCuyoMendozaArgentinauncu.edu.ar
– sequence: 7
  givenname: Jorge R.
  orcidid: 0000-0002-2842-9891
  surname: Santos
  fullname: Santos, Jorge R.
  organization: Facultad de Ciencias Exactas y NaturalesUNCuyoMendozaArgentinauncu.edu.ar
BookMark eNp9kFFLwzAQx4MouE3f_AABH7UuaZs0faxj6mDgQAXfStZe18wuqUnr2DfwY5uyPft0d_C7_3G_MTrXRgNCN5Q8UMrYNCRhNBVRzHjMz9CIioQFKU0_z31PmAjSMI4v0di5LSFUUEJG6DfTeKGDEtquxo-gi3on7ZfSG2wqPP8xTd8po6U9YKlL_LaXduf5DppGbTwNOGs2xqqu3jlcGYuzvjOukM2QsJJW7qAD6_cAWpy1baMKOQQ6bDRe9Ws_41lj-tJdoYtKNg6uT3WCPp7m77OXYPn6vJhly6CgUcqDkLGYr-NElILTkCWSS8YljypWykqECfj3hSgKCCEtOROJlDSqYoiqlHDwdYJuj7mtNd89uC7fmt5qfzKPKEmSNCYR8dT9kSqscc5ClbdWeTOHnJJ8cJ0PrvOTa4_fHfFa6VLu1f_0H84VgSQ
Cites_doi 10.1016/j.engappai.2021.104288
10.1016/j.future.2018.02.003
10.1016/j.future.2012.03.011
10.33383/2019-029
10.1016/j.compeleceng.2017.12.007
10.1016/j.parco.2015.02.003
10.1039/c5cp06153a
10.4149/cai_2018_4_815
10.1016/j.suscom.2022.100686
10.1007/978-3-662-44874-8
10.1007/s10922-017-9444-x
10.1016/j.advengsoft.2017.04.002
10.1039/d0cp04442c
10.1016/j.advengsoft.2017.10.004
10.1016/j.cam.2012.10.008
10.1016/j.ijrefrig.2016.06.010
10.1093/mnras/stab610
10.1006/jcph.1995.1039
10.1016/j.comcom.2020.02.010
10.1007/s10723-014-9314-7
10.1155/2020/4653204
10.1016/j.jss.2016.05.011
10.1016/j.sysarc.2017.07.002
10.1016/j.ifacol.2016.07.690
10.1186/s13677-017-0100-5
10.1016/j.sysarc.2022.102598
10.1007/s10462-016-9486-6
10.1016/j.future.2017.01.020
10.1016/j.suscom.2017.10.003
10.1109/tevc.2013.2281535
10.1016/j.ejor.2006.08.008
10.1214/aoms/1177730491
10.1109/4235.996017
10.1016/j.jnca.2019.102464
10.1016/j.future.2016.01.018
10.1061/(asce)0733-9399(2003)129:6(689)
10.1016/B978-0-12-809194-4.00022-3
10.1007/s10586-021-03265-9
10.1016/j.jnca.2016.03.001
10.1109/tsc.2018.2866421
10.1109/jsyst.2013.2256731
10.1007/s10586-020-03148-5
10.1016/j.cor.2016.09.010
10.1021/cr0680282
10.1007/s11036-018-0996-0
ContentType Journal Article
Copyright Copyright © 2023 Virginia Yannibelli et al.
Copyright © 2023 Virginia Yannibelli et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2023 Virginia Yannibelli et al.
– notice: Copyright © 2023 Virginia Yannibelli et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1155/2023/8345646
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-919X
Editor Liu, Zhihan
Editor_xml – sequence: 1
  givenname: Zhihan
  surname: Liu
  fullname: Liu, Zhihan
EndPage 26
ExternalDocumentID 10_1155_2023_8345646
GroupedDBID .4S
.DC
0R~
4.4
5VS
AAFWJ
AAJEY
ABDBF
ABJNI
ACGFS
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BCNDV
DU5
EAD
EAP
EBS
EDO
EMK
EPL
EST
ESX
GROUPED_DOAJ
HZ~
I-F
IAO
IHR
IOS
KQ8
MIO
MK~
ML~
MV1
NGNOM
O9-
OK1
RHU
RHW
RHX
TUS
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
H13
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c1396-25546b478d861257a6a56a63f5daf827e83488cce2e9d6587aa13f4e3f906e4e3
IEDL.DBID RHX
ISSN 1058-9244
IngestDate Fri Jul 25 09:31:30 EDT 2025
Sat Nov 29 04:07:08 EST 2025
Sun Jun 02 19:18:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1396-25546b478d861257a6a56a63f5daf827e83488cce2e9d6587aa13f4e3f906e4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2882-766X
0000-0002-2842-9891
0000-0001-5761-1898
0000-0001-7854-7610
0000-0001-6444-4610
0000-0002-5666-8355
0000-0003-4125-3998
OpenAccessLink https://dx.doi.org/10.1155/2023/8345646
PQID 3107794030
PQPubID 2046410
PageCount 26
ParticipantIDs proquest_journals_3107794030
crossref_primary_10_1155_2023_8345646
hindawi_primary_10_1155_2023_8345646
PublicationCentury 2000
PublicationDate 2023-2-17
PublicationDateYYYYMMDD 2023-02-17
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-2-17
  day: 17
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Scientific programming
PublicationYear 2023
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 44
45
46
S. Lu (55)
49
P. Wangsom (19)
W. C. Skamarock (37) 2021
50
51
52
10
54
11
12
13
57
14
58
15
59
17
P. Wangsom (26)
J. Jeffers (36) 2016
H. Ishibuchi (16)
1
2
3
J. Chen (47) 2021; 33
4
5
6
7
8
9
60
61
20
V. Yannibelli (48) 2020
R. L. Snyder (35) 2005
23
24
25
M. Mao (56)
27
28
29
M. A. Netto (40)
D. A. Monge (53) 2017; 32
J. Ericson (62)
30
31
33
34
38
A. J. Nebro (21)
M. Mao (41)
M. C. Silva Filho (22)
K. Lavangnananda (18)
A. E. Eiben (39) 2015
D. Rim (32) 2019; 48
42
43
References_xml – ident: 11
  doi: 10.1016/j.engappai.2021.104288
– start-page: 249
  volume-title: Advances in Soft Computing. MICAI 2020
  year: 2020
  ident: 48
  article-title: An NSGA-III-based multiobjective intelligent autoscaler for executing engineering applications in cloud infrastructures
– ident: 46
  doi: 10.1016/j.future.2018.02.003
– ident: 3
  doi: 10.1016/j.future.2012.03.011
– start-page: 3045
  ident: 16
  article-title: Performance comparison of nsga-ii and nsga-iii on various many-objective test problems
– start-page: 187
  ident: 40
  article-title: Evaluating auto-scaling strategies for cloud computing environments
– start-page: 1
  ident: 41
  article-title: Auto-scaling to minimize cost and meet application deadlines in cloud workflows
– ident: 25
  doi: 10.33383/2019-029
– volume: 33
  year: 2021
  ident: 47
  article-title: Scheduling independent tasks in cloud environment based on modified differential evolution
  publication-title: Concurrency and Computation: Practice and Experience
– ident: 12
  doi: 10.1016/j.compeleceng.2017.12.007
– start-page: 400
  ident: 22
  article-title: CloudSim Plus: a cloud computing simulation framework pursuing software engineering principles for improved modularity, extensibility and correctness
– ident: 54
  doi: 10.1016/j.parco.2015.02.003
– ident: 30
  doi: 10.1039/c5cp06153a
– volume-title: A Description of the Advanced Research WRF Version 4.3
  year: 2021
  ident: 37
– ident: 34
  doi: 10.4149/cai_2018_4_815
– ident: 60
  doi: 10.1016/j.suscom.2022.100686
– volume-title: Introduction to Evolutionary Computing
  year: 2015
  ident: 39
  doi: 10.1007/978-3-662-44874-8
– ident: 6
  doi: 10.1007/s10922-017-9444-x
– start-page: 308
  ident: 62
  article-title: Analysis of performance variability in public cloud computing
– volume-title: Frost Protection: Fundamentals, Practice and Economics, Volume 1 of Environment and Natural Resources Series
  year: 2005
  ident: 35
– ident: 5
  doi: 10.1016/j.advengsoft.2017.04.002
– ident: 27
  doi: 10.1039/d0cp04442c
– ident: 4
  doi: 10.1016/j.advengsoft.2017.10.004
– ident: 1
  doi: 10.1016/j.cam.2012.10.008
– ident: 33
  doi: 10.1016/j.ijrefrig.2016.06.010
– ident: 31
  doi: 10.1093/mnras/stab610
– ident: 29
  doi: 10.1006/jcph.1995.1039
– ident: 9
  doi: 10.1016/j.comcom.2020.02.010
– ident: 8
  doi: 10.1007/s10723-014-9314-7
– ident: 14
  doi: 10.1155/2020/4653204
– ident: 57
  doi: 10.1016/j.jss.2016.05.011
– ident: 44
  doi: 10.1016/j.sysarc.2017.07.002
– ident: 17
  doi: 10.1016/j.ifacol.2016.07.690
– ident: 19
  article-title: Extreme solutions NSGA-III (E-NSGA-III) for multiobjective constrained problems
– ident: 51
  doi: 10.1186/s13677-017-0100-5
– volume: 32
  start-page: 291
  issue: 4
  year: 2017
  ident: 53
  article-title: Autoscaling scientific workflows on the cloud by combining on-demand and spot instances
  publication-title: Computer Systems Science and Engineering
– start-page: 269
  ident: 26
  article-title: The application of nondominated sorting genetic algorithm (NSGA-III) for scientific-workflow scheduling on cloud
– ident: 59
  doi: 10.1016/j.sysarc.2022.102598
– ident: 24
  doi: 10.1007/s10462-016-9486-6
– ident: 43
  doi: 10.1016/j.future.2017.01.020
– ident: 52
  doi: 10.1016/j.suscom.2017.10.003
– ident: 15
  doi: 10.1109/tevc.2013.2281535
– start-page: 66
  ident: 21
  article-title: SMPSO: a new PSO-based metaheuristic for multiobjective optimization
– ident: 20
  doi: 10.1016/j.ejor.2006.08.008
– ident: 38
  doi: 10.1214/aoms/1177730491
– ident: 13
  doi: 10.1109/4235.996017
– ident: 58
  doi: 10.1016/j.jnca.2019.102464
– ident: 42
  doi: 10.1016/j.future.2016.01.018
– start-page: 657
  ident: 55
  article-title: A dynamic hybrid resource provisioning approach for running large-scale computational applications on cloud spot and on-demand instances
– ident: 2
  doi: 10.1061/(asce)0733-9399(2003)129:6(689)
– start-page: 499
  volume-title: Intel Xeon Phi Processor High Performance Programming
  year: 2016
  ident: 36
  article-title: Chapter 22: weather research and forecasting (WRF)
  doi: 10.1016/B978-0-12-809194-4.00022-3
– ident: 10
  doi: 10.1007/s10586-021-03265-9
– start-page: 67
  ident: 56
  article-title: Scaling and scheduling to maximize application performance within budget constraints in cloud workflows
– ident: 49
  doi: 10.1016/j.jnca.2016.03.001
– ident: 61
  doi: 10.1109/tsc.2018.2866421
– ident: 7
  doi: 10.1109/jsyst.2013.2256731
– start-page: 17
  ident: 18
  article-title: Extreme solutions nsga-III (e-nsga-III) for scientific workflow scheduling on cloud
– ident: 45
  doi: 10.1007/s10586-020-03148-5
– volume: 48
  year: 2019
  ident: 32
  article-title: Unsupervised machine learning algorithms as support tools in molecular dynamics simulations
  publication-title: Simposio Argentino de Inteligencia Artificial
– ident: 23
  doi: 10.1016/j.cor.2016.09.010
– ident: 28
  doi: 10.1021/cr0680282
– ident: 50
  doi: 10.1007/s11036-018-0996-0
SSID ssj0018100
Score 2.273343
Snippet Many important computational applications in science, engineering, industry, and technology are represented by PSE (parameter sweep experiment) applications....
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Behavior
Cloud computing
Clouds
Computing time
Cost analysis
Evolutionary algorithms
Genetic algorithms
Molecular dynamics
Multiple objective analysis
Optimization algorithms
Parameters
Particle swarm optimization
Performance evaluation
Software
Sorting algorithms
Swarm intelligence
Virtual environments
Workloads
Title An In-depth Benchmarking of Evolutionary and Swarm Intelligence Algorithms for Autoscaling Parameter Sweep Applications on Public Clouds
URI https://dx.doi.org/10.1155/2023/8345646
https://www.proquest.com/docview/3107794030
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1875-919X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018100
  issn: 1058-9244
  databaseCode: 24P
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sUfDiW6zWMod6DOa1yeYYi6WClOIDegub7MYWbFKStMV_4M92Ng_xcdBTSEg2MLMz883O8A0hfceMMap5tkap1DVb6FwLMQ3TqEdDbkQxDaupJffueMymU29SkyTlv0v4GO1Uem5dM0vxnjgt0mJUdW49jKafxQJm6BXpAEXbxXDV9Lf_-PZb5NmZqZR3M__lgsu4MjwgezUgBL_S4CHZkskR2W-GLUBte8fk3U_gLtGEXBYzuMFnswUvz7khjeF2Xe8gnr0BTwQ8bni2gLsvfJvgv76k2byYLXJAoAr-qkhzVJBaYcJVi1b5u42US_C_VLUhTaA624PBa7oS-Ql5Ht4-DUZaPUZBixDeOZqpGtFC22WCKTjjcodThztWTAWPmelKlA9jUSRN6QkEJC7nhhXb0oo93ZF4PSXtJE3kGQFEV4bBTamHiliQeaHgUrqUo1oFQgfWIVeNiINlxZYRlFkGpYFSRVCrokP6tfz_eK3bKCeoTSsPEI-66ETQOZ3_b5ULsqtuVau14XZJu8hW8pJsR-tinmc90jLtSa_cUB-DWcMz
linkProvider Hindawi Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+In-depth+Benchmarking+of+Evolutionary+and+Swarm+Intelligence+Algorithms+for+Autoscaling+Parameter+Sweep+Applications+on+Public+Clouds&rft.jtitle=Scientific+programming&rft.au=Yannibelli%2C+Virginia&rft.au=Pacini%2C+Elina&rft.au=Monge%2C+David+A&rft.au=Mateos%2C+Cristian&rft.date=2023-02-17&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2023&rft_id=info:doi/10.1155%2F2023%2F8345646&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon