DMOEA- \varepsilon \text : Decomposition-Based Multiobjective Evolutionary Algorithm With the \varepsilon -Constraint Framework

Decomposition is an efficient and prevailing strategy for solving multiobjective optimization problems (MOPs). Its success has been witnessed by the multiobjective evolutionary algorithm MOEA/D and its variants. In decomposition-based methods, an MOP is decomposed into a number of scalar subproblems...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation Ročník 21; číslo 5; s. 714 - 730
Hlavní autori: Chen, Jie, Li, Juan, Xin, Bin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1089-778X, 1941-0026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Decomposition is an efficient and prevailing strategy for solving multiobjective optimization problems (MOPs). Its success has been witnessed by the multiobjective evolutionary algorithm MOEA/D and its variants. In decomposition-based methods, an MOP is decomposed into a number of scalar subproblems by using various scalarizing functions. Most decomposition schemes adopt the weighting method to construct scalarizing functions. In this paper, another classical generation method in the field of mathematical programming, that is the e-constraint method, is adopted for the multiobjective optimization. It selects one of the objectives as the main objective and converts other objectives into constraints. We incorporate the e-constraint method into the decomposition strategy and propose a new decomposition-based multiobjective evolutionary algorithm with the e-constraint framework (DMOEA-εC). It decomposes an MOP into a series of scalar constrained optimization subproblems by assigning each subproblem with an upper bound vector. These subproblems are optimized simultaneously by using information from neighboring subproblems. Besides, a main objective alternation strategy, a solution-to-subproblem matching procedure, and a subproblem-to-solution matching procedure are proposed to strike a balance between convergence and diversity. DMOEA-εC is compared with a number of state-of-theart multiobjective evolutionary algorithms. Experimental studies demonstrate that DMOEA-εC outperforms or performs competitively against these algorithms on the majority of 34 continuous benchmark problems, and it also shows obvious advantages in solving multiobjective 0-1 knapsack problems.
AbstractList Decomposition is an efficient and prevailing strategy for solving multiobjective optimization problems (MOPs). Its success has been witnessed by the multiobjective evolutionary algorithm MOEA/D and its variants. In decomposition-based methods, an MOP is decomposed into a number of scalar subproblems by using various scalarizing functions. Most decomposition schemes adopt the weighting method to construct scalarizing functions. In this paper, another classical generation method in the field of mathematical programming, that is the [Formula Omitted]-constraint method, is adopted for the multiobjective optimization. It selects one of the objectives as the main objective and converts other objectives into constraints. We incorporate the [Formula Omitted]-constraint method into the decomposition strategy and propose a new decomposition-based multiobjective evolutionary algorithm with the [Formula Omitted]-constraint framework (DMOEA-[Formula Omitted]). It decomposes an MOP into a series of scalar constrained optimization subproblems by assigning each subproblem with an upper bound vector. These subproblems are optimized simultaneously by using information from neighboring subproblems. Besides, a main objective alternation strategy, a solution-to-subproblem matching procedure, and a subproblem-to-solution matching procedure are proposed to strike a balance between convergence and diversity. DMOEA-[Formula Omitted] is compared with a number of state-of-the-art multiobjective evolutionary algorithms. Experimental studies demonstrate that DMOEA-[Formula Omitted] outperforms or performs competitively against these algorithms on the majority of 34 continuous benchmark problems, and it also shows obvious advantages in solving multiobjective 0-1 knapsack problems.
Decomposition is an efficient and prevailing strategy for solving multiobjective optimization problems (MOPs). Its success has been witnessed by the multiobjective evolutionary algorithm MOEA/D and its variants. In decomposition-based methods, an MOP is decomposed into a number of scalar subproblems by using various scalarizing functions. Most decomposition schemes adopt the weighting method to construct scalarizing functions. In this paper, another classical generation method in the field of mathematical programming, that is the e-constraint method, is adopted for the multiobjective optimization. It selects one of the objectives as the main objective and converts other objectives into constraints. We incorporate the e-constraint method into the decomposition strategy and propose a new decomposition-based multiobjective evolutionary algorithm with the e-constraint framework (DMOEA-εC). It decomposes an MOP into a series of scalar constrained optimization subproblems by assigning each subproblem with an upper bound vector. These subproblems are optimized simultaneously by using information from neighboring subproblems. Besides, a main objective alternation strategy, a solution-to-subproblem matching procedure, and a subproblem-to-solution matching procedure are proposed to strike a balance between convergence and diversity. DMOEA-εC is compared with a number of state-of-theart multiobjective evolutionary algorithms. Experimental studies demonstrate that DMOEA-εC outperforms or performs competitively against these algorithms on the majority of 34 continuous benchmark problems, and it also shows obvious advantages in solving multiobjective 0-1 knapsack problems.
Author Juan Li
Jie Chen
Bin Xin
Author_xml – sequence: 1
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
– sequence: 2
  givenname: Juan
  orcidid: 0000-0002-9836-5125
  surname: Li
  fullname: Li, Juan
– sequence: 3
  givenname: Bin
  orcidid: 0000-0002-9836-5125
  surname: Xin
  fullname: Xin, Bin
BookMark eNp9kMlOwzAQhi0EEusDIC6WOKd4nMUOt1LKIoG4sB2QIsdMwCWNi-0WOPHqOCpCggOXWTTzz-j_NslqZzskZBfYAICVB9fj29GAMxADXgjICr5CNqDMIGGMF6uxZrJMhJD362TT-wljkOVQbpDP48ur8TChDwvlcOZNazv6EPA90EN6jNpOZ9abYGyXHCmPj_Ry3saunqAOZoF0vLDtvB8r90GH7ZN1JjxP6V2MNDzjr7PJyHY-OGW6QE-cmuKbdS_bZK1Rrced77xFbk7G16Oz5OLq9Hw0vEg0pDJPsJR1k3KsFWjUmDeSZSXkCmQugYsaVQOiKUqd5iqvi7RAzlmdCYYiK1mq0y2yv7w7c_Z1jj5UEzt3XXxZRUxFKjPG87gFyy3trPcOm2rmzDR6q4BVPeeq51z1nKtvzlEj_mi0Capn0ntt_1XuLZUGEX8-iWhJSJF-AXZ5jqE
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_robot_2025_105106
crossref_primary_10_1109_TCYB_2020_3008697
crossref_primary_10_1080_09540091_2025_2523960
crossref_primary_10_1109_TCYB_2019_2961475
crossref_primary_10_1016_j_ins_2020_05_097
crossref_primary_10_1109_TNNLS_2020_3027293
crossref_primary_10_1016_j_swevo_2021_100866
crossref_primary_10_1016_j_wasman_2019_10_018
crossref_primary_10_1016_j_asoc_2024_111800
crossref_primary_10_1109_TEVC_2024_3418470
crossref_primary_10_1109_TEVC_2020_3047835
crossref_primary_10_1007_s11227_023_05429_3
crossref_primary_10_20965_jaciii_2022_p0570
crossref_primary_10_1109_TEVC_2022_3145582
crossref_primary_10_1016_j_swevo_2020_100815
crossref_primary_10_1007_s40747_024_01656_0
crossref_primary_10_1109_TNSE_2023_3234152
crossref_primary_10_1007_s10489_023_04663_9
crossref_primary_10_1109_ACCESS_2020_3008257
crossref_primary_10_1016_j_knosys_2021_107693
crossref_primary_10_1007_s11432_020_3092_y
crossref_primary_10_1016_j_asoc_2017_09_012
crossref_primary_10_1109_ACCESS_2021_3107284
crossref_primary_10_1109_TCYB_2022_3189684
crossref_primary_10_1016_j_swevo_2022_101225
crossref_primary_10_1016_j_swevo_2023_101325
crossref_primary_10_1155_2021_8406864
crossref_primary_10_3233_JIFS_202679
crossref_primary_10_1109_TSMC_2023_3299570
crossref_primary_10_1016_j_ins_2021_11_062
crossref_primary_10_1109_TCYB_2020_2977661
crossref_primary_10_1016_j_eswa_2019_112844
crossref_primary_10_1016_j_neucom_2018_07_080
crossref_primary_10_1016_j_ins_2017_11_052
crossref_primary_10_1016_j_asoc_2022_109430
crossref_primary_10_1109_TCYB_2018_2881227
crossref_primary_10_1016_j_ins_2023_119755
crossref_primary_10_1016_j_swevo_2024_101770
crossref_primary_10_1109_ACCESS_2021_3079152
crossref_primary_10_1016_j_eswa_2018_12_003
crossref_primary_10_1016_j_jhydrol_2019_124431
crossref_primary_10_1109_ACCESS_2019_2910241
crossref_primary_10_1145_3604614
crossref_primary_10_1016_j_swevo_2021_100932
crossref_primary_10_1016_j_eswa_2023_122119
crossref_primary_10_1109_TCYB_2024_3377272
crossref_primary_10_1016_j_asoc_2019_01_033
crossref_primary_10_1016_j_swevo_2021_101020
crossref_primary_10_1016_j_eswa_2022_118915
crossref_primary_10_1016_j_ins_2020_08_070
crossref_primary_10_1016_j_swevo_2024_101683
Cites_doi 10.1007/s11431-015-6003-0
10.1109/4235.797969
10.1109/ICEC.1994.350037
10.1145/127719.122736
10.1109/CEC.2015.7257280
10.1016/j.advengsoft.2011.05.014
10.1007/978-3-540-31880-4_20
10.1109/TEVC.2003.810758
10.1002/int.20358
10.1007/978-1-4757-5184-0
10.1109/MCDM.2009.4938830
10.1109/CIS.2010.37
10.1109/TSMCB.2012.2231860
10.1016/j.swevo.2011.03.001
10.1007/978-3-642-01020-0_35
10.1109/4235.996017
10.1016/j.future.2013.04.023
10.1109/TSMCA.2009.2012436
10.1080/0305215X.2012.720682
10.1109/TSMCC.2011.2160941
10.1109/TEVC.2013.2281534
10.1109/TEVC.2014.2301794
10.1109/CEC.2003.1299427
10.1109/TSMCB.2006.886164
10.1109/CEC.2009.4982949
10.1016/S0045-7825(99)00389-8
10.1109/TEVC.2009.2033671
10.1109/TEVC.2016.2521868
10.1109/TEVC.2008.925798
10.1162/evco.1994.2.3.221
10.1109/TEVC.2007.892759
10.1109/ICNC.2010.5583335
10.1007/s00500-011-0704-5
10.1162/106365600568202
10.1145/1830483.1830577
10.1109/TEVC.2015.2457616
10.1109/TEVC.2015.2424251
10.1162/EVCO_a_00009
10.1016/j.ejor.2008.10.003
10.1007/978-3-642-15871-1_1
10.1109/TEVC.2010.2051446
10.1109/TEVC.2002.802873
10.1109/CEC.2002.1007032
10.1109/MCI.2006.1597059
10.1109/TEVC.2013.2281535
10.1109/CEC.2012.6256438
10.1016/j.amc.2009.03.037
10.1162/EVCO_a_00038
10.1016/0377-2217(88)90257-3
10.1007/s11432-015-5372-0
10.1162/EVCO_a_00109
10.1016/j.ejor.2013.09.001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2017.2671462
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 730
ExternalDocumentID 10_1109_TEVC_2017_2671462
7858787
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61673058; U1609214; 61304215
  funderid: 10.13039/501100001809
– fundername: Research Fund for the Doctoral Program of Higher Education of China
  grantid: 20131101120033
– fundername: Beijing Outstanding Ph.D. Program Mentor
  grantid: 20131000704
– fundername: Projects of Major International (Regional) Joint Research Program NSFC
  grantid: 61120106010
  funderid: 10.13039/501100001809
– fundername: Foundation for Innovative Research Groups of the National Natural Science Foundation of China
  grantid: 61321002
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c1385-e98bf32eba1cece5f804915a1858127beaf17f69c35a5b636e220b470e74903c3
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Mon Jun 30 07:21:26 EDT 2025
Tue Nov 18 22:24:33 EST 2025
Sat Nov 29 03:13:49 EST 2025
Tue Aug 26 16:43:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1385-e98bf32eba1cece5f804915a1858127beaf17f69c35a5b636e220b470e74903c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9836-5125
PQID 1946384025
PQPubID 85418
PageCount 17
ParticipantIDs proquest_journals_1946384025
ieee_primary_7858787
crossref_primary_10_1109_TEVC_2017_2671462
crossref_citationtrail_10_1109_TEVC_2017_2671462
PublicationCentury 2000
PublicationDate 2017-Oct.
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref54
ref10
miettinen (ref1) 1999
ref17
ref16
ref19
ref18
ref51
deb (ref2) 2001
mavrotas (ref41) 2013; 219
ref46
ref47
ref42
ref44
zhou (ref57) 2005
ref43
chen (ref27) 2009
ref49
ref8
ref7
zhang (ref60) 2009
ref9
ref4
ref3
ref5
ref40
ref34
ref37
ref36
ref31
ref33
lai (ref30) 2009
ref32
zitzler (ref12) 2004
ref39
ref38
sindhya (ref28) 2011; 15
lü (ref35) 2016; 59
metev (ref48) 2003; 3
haimes (ref45) 1971; 1
zitzler (ref11) 2001
ref24
ref23
ref26
ref25
ref64
ref20
ref63
ref22
ref65
ref21
huband (ref61) 2005
ref29
kukkonen (ref50) 2006
fonseca (ref6) 1993
ref62
References_xml – volume: 59
  start-page: 1
  year: 2016
  ident: ref35
  article-title: A large-scale flight multi-objective assignment approach based on multi-island parallel evolution algorithm with cooperative coevolutionary
  publication-title: Sci China Inf Sci
  doi: 10.1007/s11431-015-6003-0
– year: 2001
  ident: ref11
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– ident: ref10
  doi: 10.1109/4235.797969
– ident: ref8
  doi: 10.1109/ICEC.1994.350037
– ident: ref52
  doi: 10.1145/127719.122736
– ident: ref37
  doi: 10.1109/CEC.2015.7257280
– year: 1999
  ident: ref1
  publication-title: Nonlinear Multiobjective Optimization
– ident: ref56
  doi: 10.1016/j.advengsoft.2011.05.014
– start-page: 280
  year: 2005
  ident: ref61
  article-title: A scalable multi-objective test problem toolkit
  publication-title: Proc 3rd Int Conf Evol Multi-Criterion Optim
  doi: 10.1007/978-3-540-31880-4_20
– ident: ref58
  doi: 10.1109/TEVC.2003.810758
– ident: ref54
  doi: 10.1002/int.20358
– start-page: 209
  year: 2009
  ident: ref27
  article-title: Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref3
  doi: 10.1007/978-1-4757-5184-0
– start-page: 553
  year: 2006
  ident: ref50
  article-title: A fast and effective method for pruning of non-dominated solutions in many-objective problems
  publication-title: Proc Int Conf Parallel Problem Solving Nat
– ident: ref55
  doi: 10.1109/MCDM.2009.4938830
– ident: ref33
  doi: 10.1109/CIS.2010.37
– ident: ref24
  doi: 10.1109/TSMCB.2012.2231860
– ident: ref4
  doi: 10.1016/j.swevo.2011.03.001
– volume: 219
  start-page: 9652
  year: 2013
  ident: ref41
  article-title: An improved version of the augmented $\varepsilon $ -constraint method (AUGMECON2) for finding the exact Pareto set in multi-objective integer programming problems
  publication-title: Appl Math Comput
– ident: ref31
  doi: 10.1007/978-3-642-01020-0_35
– ident: ref9
  doi: 10.1109/4235.996017
– ident: ref42
  doi: 10.1016/j.future.2013.04.023
– ident: ref64
  doi: 10.1109/TSMCA.2009.2012436
– ident: ref38
  doi: 10.1080/0305215X.2012.720682
– ident: ref65
  doi: 10.1109/TSMCC.2011.2160941
– start-page: 416
  year: 1993
  ident: ref6
  article-title: Genetic algorithms for multiobjective optimization: Formulationdiscussion and generalization
  publication-title: Proc 7th Int Conf Genetic Algorithms
– year: 2001
  ident: ref2
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– ident: ref22
  doi: 10.1109/TEVC.2013.2281534
– ident: ref49
  doi: 10.1109/TEVC.2014.2301794
– volume: 3
  start-page: 15
  year: 2003
  ident: ref48
  article-title: A method for nadir point estimation in MOLP problems
  publication-title: Cybern Inf Technol
– ident: ref14
  doi: 10.1109/CEC.2003.1299427
– ident: ref51
  doi: 10.1109/TSMCB.2006.886164
– ident: ref17
  doi: 10.1109/CEC.2009.4982949
– start-page: 832
  year: 2004
  ident: ref12
  article-title: Indicator-based selection in multiobjective search
  publication-title: Parallel Problem Solving from Nature-PPSN VII
– ident: ref44
  doi: 10.1016/S0045-7825(99)00389-8
– ident: ref34
  doi: 10.1109/TEVC.2009.2033671
– ident: ref53
  doi: 10.1109/TEVC.2016.2521868
– ident: ref16
  doi: 10.1109/TEVC.2008.925798
– ident: ref7
  doi: 10.1162/evco.1994.2.3.221
– ident: ref15
  doi: 10.1109/TEVC.2007.892759
– ident: ref29
  doi: 10.1109/ICNC.2010.5583335
– year: 2009
  ident: ref30
  article-title: Multiobjective optimization using MOEA/D with a new mating selection mechanism
– volume: 15
  start-page: 2041
  year: 2011
  ident: ref28
  article-title: A new hybrid mutation operator for multiobjective optimization with differential evolution
  publication-title: Soft Comput
  doi: 10.1007/s00500-011-0704-5
– ident: ref62
  doi: 10.1162/106365600568202
– ident: ref32
  doi: 10.1145/1830483.1830577
– ident: ref18
  doi: 10.1109/TEVC.2015.2457616
– ident: ref19
  doi: 10.1109/TEVC.2015.2424251
– ident: ref13
  doi: 10.1162/EVCO_a_00009
– start-page: 2568
  year: 2005
  ident: ref57
  article-title: A model-based evolutionary algorithm for bi-objective optimization
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref47
  doi: 10.1016/j.ejor.2008.10.003
– ident: ref25
  doi: 10.1007/978-3-642-15871-1_1
– year: 2009
  ident: ref60
  article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition
– ident: ref36
  doi: 10.1109/TEVC.2010.2051446
– ident: ref63
  doi: 10.1109/TEVC.2002.802873
– ident: ref59
  doi: 10.1109/CEC.2002.1007032
– ident: ref5
  doi: 10.1109/MCI.2006.1597059
– ident: ref21
  doi: 10.1109/TEVC.2013.2281535
– ident: ref26
  doi: 10.1109/CEC.2012.6256438
– ident: ref40
  doi: 10.1016/j.amc.2009.03.037
– ident: ref23
  doi: 10.1162/EVCO_a_00038
– ident: ref46
  doi: 10.1016/0377-2217(88)90257-3
– ident: ref39
  doi: 10.1007/s11432-015-5372-0
– volume: 1
  start-page: 296
  year: 1971
  ident: ref45
  article-title: On a bicriterion formulation of the problems of integrated system identification and system optimization
  publication-title: IEEE Trans Syst Man Cybern
– ident: ref20
  doi: 10.1162/EVCO_a_00109
– ident: ref43
  doi: 10.1016/j.ejor.2013.09.001
SSID ssj0014519
Score 2.2142003
Snippet Decomposition is an efficient and prevailing strategy for solving multiobjective optimization problems (MOPs). Its success has been witnessed by the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 714
SubjectTerms decomposition
Evolutionary algorithms
Evolutionary computation
Functions (mathematics)
Genetic algorithms
Linear programming
main objective alternation strategy
Matching
Mathematical programming
Mopping
multiobjective optimization
Multiple objective analysis
Optimization
Pareto optimization
Sociology
solution-to-subproblem matching procedure
Strategy
subproblem-to-solution matching procedure
Upper bound
ε-constraint method
Title DMOEA- \varepsilon \text : Decomposition-Based Multiobjective Evolutionary Algorithm With the \varepsilon -Constraint Framework
URI https://ieeexplore.ieee.org/document/7858787
https://www.proquest.com/docview/1946384025
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5B1EM5AIUiwqPygROqYd-2ewuQqIcSeoA2B6SV7XghKGSjzUPixF_v2OtERFSVeln5YFuWvvE81t_MAJxgSCK0VIoGaE1porSgksc4CpMis6xFrl0R1x-s2-W9nvi5Bl-XuTDGGEc-M2d26N7y-6We2V9l54ynHAVsHdYZy-pcreWLgS2TUpPpBXqMvOdfMMNAnN-2f11aEhc7izKGmiFasUGuqco7TezMS2fr_w62DZvejSStGvdPsGZGO7C1aNFA_I3dgY039QZ34fXq-qbdouR-LiszngyG5YjcW-oH-UaujGWXewoXvUDj1icuO7dUT7VSJO25l1NZvZDW8KGsBtPHZ_IbvwT9yJVtqe0E6vpPTElnQQD7DHed9u3ld-o7MFAdxjylRnBVxJFRMtRGm7TgGFCEqUQjj44BU0YWISsyoeNUpiqLMxNFgUpYYFgigljHe9AYlSOzD6TfDyKF0Z2SGMGIlKObEGnb8wwlhSdF1IRggUmufXlye8ph7sKUQOQWxtzCmHsYm3C6XDKua3P8a_KuxW050UPWhKMF8Lm_vZM8FAmqJRTj9ODvqw7ho927JvUdQWNazcwxfNDz6WBSfXGC-QfNWuEF
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH4aA4lxYLANURjgAyeEN8eJE5tb2VoN0RUOBXqYFNmuw4pKM6VdJU786zw7bsUEQuIS-WAnlr7n9yPv83sALzEkUVYbQxlaU5oZq6iWKY6SrMo9a1HaUMR1UAyHcjxWH7fg9eYujHMukM_ckR-GXP6kttf-V9lxIYVEAbsFt0WWcdbe1trkDHyhlJZOr9BnlOOYw0yYOh71Pp94GldxxPMCdQO_YYVCW5U_dHEwMP3d_9vaA7gfHUnSbZF_CFtuvge76yYNJJ7ZPbj3W8XBffh5ev6h16XkYqUbd7WYzuo5ufDkD_KGnDrPL48kLvoWzduEhPu5tfnWqkXSW0VJ1c0P0p19rZvp8vI7-YJPgp7kjddS3ws0dKBYkv6aAnYAn_q90ckZjT0YqE1SKahT0lQpd0Yn1lknKokhRSI0mnl0DQrjdJUUVa5sKrQweZo7zpnJCuaKTLHUpo9ge17P3WMgkwnjBuM7ozGGUUKio8Ct73qGsiKzineArTEpbSxQ7nc5K0OgwlTpYSw9jGWEsQOvNkuu2uoc_5q873HbTIyQdeBwDXwZz--iTFSGigkFWTz5-6oXcPdsdD4oB--G75_Cjv9OS_E7hO1lc-2ewR27Wk4XzfMgpL8ApQfkTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DMOEA-+%24%5Cvarepsilon+%5Ctext%7BC%7D%24+%3A+Decomposition-Based+Multiobjective+Evolutionary+Algorithm+With+the+%24%5Cvarepsilon+%24+-Constraint+Framework&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Chen%2C+Jie&rft.au=Li%2C+Juan&rft.au=Xin%2C+Bin&rft.date=2017-10-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=21&rft.issue=5&rft.spage=714&rft.epage=730&rft_id=info:doi/10.1109%2FTEVC.2017.2671462&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2017_2671462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon