Intent-Driven Semantic Query: An Effective Approach for Temporal Knowledge Graph Query

The temporal knowledge graph (TKG) query facilitates the retrieval of potential answers by parsing questions that incorporate temporal constraints, regarded as a vital downstream task in the broader spectrum of the TKG applications. Currently, enhancing the accuracy of the queries and the user exper...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on big data pp. 1 - 13
Main Authors: Bai, Luyi, Dong, Jixuan, Zhu, Lin
Format: Journal Article
Language:English
Published: IEEE 2025
Subjects:
ISSN:2332-7790, 2372-2096
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The temporal knowledge graph (TKG) query facilitates the retrieval of potential answers by parsing questions that incorporate temporal constraints, regarded as a vital downstream task in the broader spectrum of the TKG applications. Currently, enhancing the accuracy of the queries and the user experience has become a focal point for researchers. Existing query methods of the TKG aim to execute unambiguous standard query statements to return query results while neglecting the potential ambiguity in user input queries. To overcome this problem, in this paper, we propose a semantic query model for temporal knowledge graphs, TKGSQ-PM (Temporal Knowledge Graph Semantic Query based on Pre-trained Model). This model first identifies and extracts entity and temporal information from temporal knowledge graph queries and obtains corresponding temporal knowledge graph embedding information based on embedding methods. Then, it utilizes the pre-trained model DistilBERT to infer the true query intent from user input queries. Finally, it performs comprehensive sorting to return highquality query results. We conduct multiple experiments on three different datasets to demonstrate the efficiency and effectiveness of the proposed methods. Experimental results indicate that the TKGSQ-PM model has an overall advantage over baseline models in terms of query effectiveness and efficiency.
AbstractList The temporal knowledge graph (TKG) query facilitates the retrieval of potential answers by parsing questions that incorporate temporal constraints, regarded as a vital downstream task in the broader spectrum of the TKG applications. Currently, enhancing the accuracy of the queries and the user experience has become a focal point for researchers. Existing query methods of the TKG aim to execute unambiguous standard query statements to return query results while neglecting the potential ambiguity in user input queries. To overcome this problem, in this paper, we propose a semantic query model for temporal knowledge graphs, TKGSQ-PM (Temporal Knowledge Graph Semantic Query based on Pre-trained Model). This model first identifies and extracts entity and temporal information from temporal knowledge graph queries and obtains corresponding temporal knowledge graph embedding information based on embedding methods. Then, it utilizes the pre-trained model DistilBERT to infer the true query intent from user input queries. Finally, it performs comprehensive sorting to return highquality query results. We conduct multiple experiments on three different datasets to demonstrate the efficiency and effectiveness of the proposed methods. Experimental results indicate that the TKGSQ-PM model has an overall advantage over baseline models in terms of query effectiveness and efficiency.
Author Zhu, Lin
Bai, Luyi
Dong, Jixuan
Author_xml – sequence: 1
  givenname: Luyi
  surname: Bai
  fullname: Bai, Luyi
  email: baily@neuq.edu.cn
  organization: School of Computer and Communication Engineering, Northeastern University (Qinhuangdao), Qinhuangdao, China
– sequence: 2
  givenname: Jixuan
  surname: Dong
  fullname: Dong, Jixuan
  email: dongjixuanneuq@hotmail.com
  organization: School of Computer and Communication Engineering, Northeastern University (Qinhuangdao), Qinhuangdao, China
– sequence: 3
  givenname: Lin
  surname: Zhu
  fullname: Zhu, Lin
  email: zhulin@neuq.edu.cn
  organization: School of Computer and Communication Engineering, Northeastern University (Qinhuangdao), Qinhuangdao, China
BookMark eNpFkF1PwjAUhhuDiYj8Ar3oHxj2Y21X7yYgEkmMcXq7lO5UZqBbuonh37tlJF6dN3nf51w812jkKw8I3VIyo5To--xxkWbpjBEmZlwSQri4QGPGFYsY0XLUZ84ipTS5QtOm-e4mtNtxzcboc-1b8G20COURPH6Hg_FtafHbD4TTA049XjoHtu1anNZ1qIzdYVcFnMGhroLZ4xdf_e6h-AK8CqbeDeQNunRm38D0fCfo42mZzZ-jzetqPU83kaVctZF0hZWgnI1dbKROtFExE3xLpDOcmFglBUlE1wGLuTQk3rJEARNWdFNOLZ8gPvy1oWqaAC6vQ3kw4ZRTkvd28sFO3tvJz3Y66m6gSgD4JyhlWgrN_wANpGKY
CODEN ITBDAX
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TBDATA.2025.3600035
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2372-2096
EndPage 13
ExternalDocumentID 10_1109_TBDATA_2025_3600035
11129659
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
RIA
RIE
AAYXX
AGSQL
CITATION
EJD
O9-
ID FETCH-LOGICAL-c137t-6fdc6e7fc4f4a6989a74253b06fa30a478d085f4ae2436a04b287e25c589a31c3
IEDL.DBID RIE
ISSN 2332-7790
IngestDate Sat Nov 29 07:36:29 EST 2025
Wed Aug 27 07:37:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c137t-6fdc6e7fc4f4a6989a74253b06fa30a478d085f4ae2436a04b287e25c589a31c3
PageCount 13
ParticipantIDs crossref_primary_10_1109_TBDATA_2025_3600035
ieee_primary_11129659
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on big data
PublicationTitleAbbrev TBData
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001600392
Score 2.2784083
Snippet The temporal knowledge graph (TKG) query facilitates the retrieval of potential answers by parsing questions that incorporate temporal constraints, regarded as...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Cognition
Data mining
Intention Inference
Knowledge graphs
Pattern matching
Pre-trained Model
Semantic Query
Semantics
Structured Query Language
Symbols
Temporal Knowledge Graph Query
Training
Vectors
Title Intent-Driven Semantic Query: An Effective Approach for Temporal Knowledge Graph Query
URI https://ieeexplore.ieee.org/document/11129659
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2372-2096
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001600392
  issn: 2332-7790
  databaseCode: RIE
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60ePBifVSsL_bg0bRJ9pX1Fq1VUIpilN5CdrOBgqYSU8F_775K9eDBW8jOQphJst_M7vcNAGdKSCmIREFMOQkwwzzghuyuVxahRFJxJS1R-J5NJsl0yh88Wd1yYZRS9vCZGphLu5dfzuXClMqGkQEHlPB1sM4YdWStVUGFGp5p7JWFopAPs8tRmqU6B4zJAFG7afZr9fnRTsWuJuPuP59jG2x52AhTF-cdsKbqXdBdtmSA_gvdAy_2SHobjBrzF4NP6k17bibh40I1XxcwraGTK9ajMPVy4lDjVpg5iapXeLcsssEbo2XtZvbA8_g6u7oNfOuEQEaItQGtSkkVqySucGF6RBY6BSZIhLQqUFhglpQaa-kxFWNEixALnTmpmEiiTVEk0T7o1PNaHQCoo0lCrJgQMjFooygjbWlgJi0SndP2wfnSpfm7U8jIbWYR8txFIDcRyH0E-qBnHLoy9b48_OP-Edg0013V4xh02mahTsCG_GxnH82pfQW-Aed1r-s
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgIMGFshRRVh84kjaL7cTcAqUUtVQgAuotih1HqgQpCikSf4-3qnDgwC2KJ1E0k8Rvxn5vADgXjHOGeeD4hGIHhYg6VJHd5czCBIsKKrgmCo_C8TiaTOiDJatrLowQQm8-Ex11qNfy8xmfq1JZ11PggGC6CtYwQr5r6FrLkgpRTFPfagt5Lu0mV704iWUW6ONOQPSy2a_550dDFT2f9Jv_fJJtsGWBI4xNpHfAiih3QXPRlAHab3QPvOhN6bXTq9R_DD6JN-m7KYePc1F9XcK4hEawWI7C2AqKQ4lcYWJEql7hcFFmg7dKzdpc2QLP_ZvkeuDY5gkO94KwdkiRcyLCgqMCZapLZCaTYBwwlxRZ4GYojHKJtuSY8FFAMhcxmTsJH3MsTQOPB_ugUc5KcQCgjCd2kQgZ45HCG1nuSUsFNEkWyay2DS4WLk3fjUZGqnMLl6YmAqmKQGoj0AYt5dClqfXl4R_nz8DGILkfpaO78fAIbKpbmRrIMWjU1VycgHX-WU8_qlP9OnwDPZCzMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intent-Driven+Semantic+Query%3A+An+Effective+Approach+for+Temporal+Knowledge+Graph+Query&rft.jtitle=IEEE+transactions+on+big+data&rft.au=Bai%2C+Luyi&rft.au=Dong%2C+Jixuan&rft.au=Zhu%2C+Lin&rft.date=2025&rft.pub=IEEE&rft.eissn=2372-2096&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTBDATA.2025.3600035&rft.externalDocID=11129659
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7790&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7790&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7790&client=summon