Automatic and Efficient Framework for Identifying Multiple Neurological Disorders From EEG Signals

The burden of neurological disorders is huge on global health and recognized as major causes of death and disability worldwide. There are more than 600 neurological diseases, but there is no unique automatic standard detection system yet to identify multiple neurological disorders using a single fra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on technology and society Ročník 4; číslo 1; s. 76 - 86
Hlavní autoři: Tawhid, Md. Nurul Ahad, Siuly, Siuly, Wang, Kate, Wang, Hua
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2637-6415, 2637-6415
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The burden of neurological disorders is huge on global health and recognized as major causes of death and disability worldwide. There are more than 600 neurological diseases, but there is no unique automatic standard detection system yet to identify multiple neurological disorders using a single framework. Hence, this study aims to develop a common computer-aided diagnosis (CAD) system for automatic detection of multiple neurological disorders from EEG signals. In this study, we introduce a new single framework for automatic identification of four common neurological disorders, namely autism, epilepsy, parkinson's disease, and schizophrenia, from EEG data. The proposed framework is designed based on convolutional neural network (CNN) and spectrogram images of EEG signal for classifying four neurological disorders from healthy subjects (five classes). In the proposed design, firstly, the EEG signals are pre-processed for removing artifacts and noises and then converted into two-dimensional time-frequency-based spectrogram images using short-time Fourier transform. Afterwards, a CNN model is designed to perform five-class classification using those spectrogram images. The proposed method achieves much better performance in both efficiency and accuracy compared to two other popular CNN models: AlexNet and ResNet50. In addition, the performance of the proposed model is also evaluated on binary classification (disease vs. healthy) which also outperforms the state-of-the-art results for tested datasets. The obtained results recommend that our proposed framework will be helpful for developing a CAD system to assist the clinicians and experts in the automatic diagnosis process.
AbstractList The burden of neurological disorders is huge on global health and recognized as major causes of death and disability worldwide. There are more than 600 neurological diseases, but there is no unique automatic standard detection system yet to identify multiple neurological disorders using a single framework. Hence, this study aims to develop a common computer-aided diagnosis (CAD) system for automatic detection of multiple neurological disorders from EEG signals. In this study, we introduce a new single framework for automatic identification of four common neurological disorders, namely autism, epilepsy, parkinson’s disease, and schizophrenia, from EEG data. The proposed framework is designed based on convolutional neural network (CNN) and spectrogram images of EEG signal for classifying four neurological disorders from healthy subjects (five classes). In the proposed design, firstly, the EEG signals are pre-processed for removing artifacts and noises and then converted into two-dimensional time-frequency-based spectrogram images using short-time Fourier transform. Afterwards, a CNN model is designed to perform five-class classification using those spectrogram images. The proposed method achieves much better performance in both efficiency and accuracy compared to two other popular CNN models: AlexNet and ResNet50. In addition, the performance of the proposed model is also evaluated on binary classification (disease vs. healthy) which also outperforms the state-of-the-art results for tested datasets. The obtained results recommend that our proposed framework will be helpful for developing a CAD system to assist the clinicians and experts in the automatic diagnosis process.
Author Siuly, Siuly
Tawhid, Md. Nurul Ahad
Wang, Kate
Wang, Hua
Author_xml – sequence: 1
  givenname: Md. Nurul Ahad
  orcidid: 0000-0002-6100-4895
  surname: Tawhid
  fullname: Tawhid, Md. Nurul Ahad
  email: md.tawhid1@live.vu.edu.au
  organization: Institute for Sustainable Industries and Liveable Cities, Victoria University, Footscray, VIC, Australia
– sequence: 2
  givenname: Siuly
  orcidid: 0000-0003-2491-0546
  surname: Siuly
  fullname: Siuly, Siuly
  email: siuly.siuly@vu.edu.au
  organization: Institute for Sustainable Industries and Liveable Cities, Victoria University, Footscray, VIC, Australia
– sequence: 3
  givenname: Kate
  surname: Wang
  fullname: Wang, Kate
  email: hua.wang@vu.edu.au
  organization: Institute for Sustainable Industries and Liveable Cities, Victoria University, Footscray, VIC, Australia
– sequence: 4
  givenname: Hua
  orcidid: 0000-0002-8465-0996
  surname: Wang
  fullname: Wang, Hua
  email: kate.wang@rmit.edu.au
  organization: School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
BookMark eNp9kD1PwzAQhi0EEqV0Z2CwxJzij8Rxxqq0pVKBoWW2bMeuXJK4OIlQ_z2u2qFiYLrT6X1Od88duG58YwB4wGiMMSqeN5v1mCBCx5TQIiPsCgwIo3nCUpxdX_S3YNS2O4QQyTDmmA-AmvSdr2XnNJRNCWfWOu1M08F5kLX58eELWh_gsowzZw-u2cK3vurcvjLw3fTBV37rtKzgi2t9KE1oI-lrOJst4NptG1m19-DGxmJG5zoEn_PZZvqarD4Wy-lklWhMc56UlFtKS8PTLNUos5ZxxZTWOc1YiuJISaYwTbOCRkCV1lJNlFKoLArMOKND8HTauw_-uzdtJ3a-D8cLBMkLginBKY8pdkrp4Ns2GCu06-L_vumCdJXASByViqhUHJWKs9IIoj_gPrhahsN_yOMJccaYi3jUz2lKfwEHmINr
CODEN ITTSCY
CitedBy_id crossref_primary_10_1016_j_neuri_2025_100196
crossref_primary_10_1007_s11571_025_10248_8
crossref_primary_10_1016_j_ins_2023_119788
crossref_primary_10_1145_3742795
crossref_primary_10_1109_ACCESS_2024_3520861
crossref_primary_10_1016_j_bspc_2024_107380
crossref_primary_10_3389_fnins_2025_1541062
crossref_primary_10_1007_s10548_025_01106_1
crossref_primary_10_1016_j_bbe_2025_04_001
crossref_primary_10_1016_j_bspc_2023_105245
crossref_primary_10_3390_app14010273
crossref_primary_10_3390_s25175530
crossref_primary_10_1007_s12015_024_10791_7
crossref_primary_10_1109_ACCESS_2024_3450970
crossref_primary_10_1007_s11280_024_01275_2
crossref_primary_10_1080_00207454_2025_2529301
crossref_primary_10_3390_s25103007
crossref_primary_10_1016_j_compbiomed_2025_110567
crossref_primary_10_1177_09287329251356661
crossref_primary_10_1109_ACCESS_2025_3532515
crossref_primary_10_1016_j_compbiomed_2024_108075
crossref_primary_10_1186_s40708_025_00260_3
crossref_primary_10_1016_j_cosrev_2025_100730
crossref_primary_10_1007_s12559_025_10447_9
crossref_primary_10_1038_s41598_024_57001_5
crossref_primary_10_1109_JIOT_2023_3292232
crossref_primary_10_3390_brainsci14100987
crossref_primary_10_3390_s24237488
crossref_primary_10_1016_j_health_2023_100211
crossref_primary_10_1109_TNSRE_2023_3347032
crossref_primary_10_1007_s41019_024_00260_z
crossref_primary_10_1109_TCDS_2024_3386364
crossref_primary_10_1109_TIM_2024_3351248
Cites_doi 10.1109/MSP.2008.4408441
10.1371/journal.pone.0188629
10.1016/j.compbiomed.2022.105311
10.1109/TIM.2022.3217515
10.1109/TNSRE.2020.3022715
10.1016/j.cmpb.2016.01.017
10.1109/TMI.2016.2528162
10.1111/j.1741-1130.2007.00143.x
10.1109/ACCESS.2019.2960848
10.18280/ts.370209
10.1371/journal.pone.0253094
10.1007/978-3-031-15512-3_13
10.1109/IEMBS.2008.4649350
10.1016/j.apacoust.2021.107941
10.1109/CVPR.2016.90
10.3390/s20092505
10.1016/j.bbe.2017.08.006
10.1016/j.neucom.2016.08.050
10.1016/j.neunet.2019.12.006
10.1109/TCSS.2021.3135425
10.1007/978-3-319-59421-7_2
10.3390/s19050987
10.1007/978-3-319-47653-7
10.1049/el.2020.2646
10.1016/j.bspc.2020.102223
10.5555/2999134.2999257
10.3389/fnins.2022.957181
10.1016/j.parkreldis.2020.08.001
10.1016/j.nicl.2014.12.005
10.3390/app9142870
10.1049/iet-smt.2018.5358
10.1007/s11633-019-1197-4
10.1007/978-3-030-90888-1_16
10.1016/S1474-4422(19)30411-9
10.1109/TNSRE.2020.3013429
10.1007/s10489-022-03252-6
10.1371/journal.pone.0277555
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
8FD
F28
FR3
DOI 10.1109/TTS.2023.3239526
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2637-6415
EndPage 86
ExternalDocumentID 10_1109_TTS_2023_3239526
10025834
Genre orig-research
GrantInformation_xml – fundername: Australian Research Council Linkage Project
  grantid: LP170100934
  funderid: 10.13039/501100000923
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
8FD
F28
FR3
ID FETCH-LOGICAL-c1378-d38f33de8454c05ff68b6bcc7356404c0ba6b134593c13bdff3c2bbb0d9916863
IEDL.DBID RIE
ISSN 2637-6415
IngestDate Mon Jun 30 05:23:52 EDT 2025
Tue Nov 18 21:39:58 EST 2025
Sat Nov 29 04:12:58 EST 2025
Wed Aug 27 02:17:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1378-d38f33de8454c05ff68b6bcc7356404c0ba6b134593c13bdff3c2bbb0d9916863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2491-0546
0000-0002-8465-0996
0000-0002-6100-4895
PQID 2792132148
PQPubID 5075779
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TTS_2023_3239526
crossref_primary_10_1109_TTS_2023_3239526
proquest_journals_2792132148
ieee_primary_10025834
PublicationCentury 2000
PublicationDate 2023-March
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-March
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on technology and society
PublicationTitleAbbrev TTS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
Pereira (ref28) 2019
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
Alhaddad (ref27) 2012; 4
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
(ref3) 2021
ref29
ref8
ref7
ref9
ref4
ref6
ref5
ref40
References_xml – ident: ref7
  doi: 10.1109/MSP.2008.4408441
– ident: ref30
  doi: 10.1371/journal.pone.0188629
– ident: ref36
  doi: 10.1016/j.compbiomed.2022.105311
– ident: ref37
  doi: 10.1109/TIM.2022.3217515
– ident: ref11
  doi: 10.1109/TNSRE.2020.3022715
– ident: ref35
  doi: 10.1016/j.cmpb.2016.01.017
– ident: ref26
  doi: 10.1109/TMI.2016.2528162
– ident: ref1
  doi: 10.1111/j.1741-1130.2007.00143.x
– ident: ref21
  doi: 10.1109/ACCESS.2019.2960848
– ident: ref22
  doi: 10.18280/ts.370209
– ident: ref23
  doi: 10.1371/journal.pone.0253094
– ident: ref12
  doi: 10.1007/978-3-031-15512-3_13
– ident: ref14
  doi: 10.1109/IEMBS.2008.4649350
– ident: ref32
  doi: 10.1016/j.apacoust.2021.107941
– ident: ref34
  doi: 10.1109/CVPR.2016.90
– ident: ref19
  doi: 10.3390/s20092505
– ident: ref18
  doi: 10.1016/j.bbe.2017.08.006
– ident: ref8
  doi: 10.1016/j.neucom.2016.08.050
– ident: ref16
  doi: 10.1016/j.neunet.2019.12.006
– ident: ref13
  doi: 10.1109/TCSS.2021.3135425
– volume-title: Resting-state interictal EEG recordings of refractory epilepsy patients
  year: 2019
  ident: ref28
– ident: ref20
  doi: 10.1007/978-3-319-59421-7_2
– ident: ref31
  doi: 10.3390/s19050987
– ident: ref5
  doi: 10.1007/978-3-319-47653-7
– ident: ref9
  doi: 10.1049/el.2020.2646
– ident: ref17
  doi: 10.1016/j.bspc.2020.102223
– ident: ref33
  doi: 10.5555/2999134.2999257
– ident: ref38
  doi: 10.3389/fnins.2022.957181
– ident: ref29
  doi: 10.1016/j.parkreldis.2020.08.001
– ident: ref15
  doi: 10.1016/j.nicl.2014.12.005
– ident: ref39
  doi: 10.3390/app9142870
– volume: 4
  start-page: 45
  issue: 2
  year: 2012
  ident: ref27
  article-title: Diagnosis autism by fisher linear discriminant analysis FLDA via EEG
  publication-title: Int. J. Bio-Sci. Bio-Technol.
– ident: ref4
  doi: 10.1049/iet-smt.2018.5358
– ident: ref6
  doi: 10.1007/s11633-019-1197-4
– ident: ref24
  doi: 10.1007/978-3-030-90888-1_16
– ident: ref2
  doi: 10.1016/S1474-4422(19)30411-9
– volume-title: Mental health
  year: 2021
  ident: ref3
– ident: ref10
  doi: 10.1109/TNSRE.2020.3013429
– ident: ref40
  doi: 10.1007/s10489-022-03252-6
– ident: ref25
  doi: 10.1371/journal.pone.0277555
SSID ssj0002511818
Score 2.2113707
Snippet The burden of neurological disorders is huge on global health and recognized as major causes of death and disability worldwide. There are more than 600...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 76
SubjectTerms Artificial neural networks
Autism
Autism spectrum disorder
Automatic programming
Brain modeling
cNN
Computer aided diagnosis
Convolutional neural networks
Diagnosis
eEG
Electroencephalography
Epilepsy
Feature extraction
Fourier transforms
Medical imaging
Mental disorders
Neurological diseases
neurological disorder
Neurological disorders
Parkinson's disease
Public health
Schizophrenia
Signal classification
Spectrogram
time-frequency spectrogram image
Title Automatic and Efficient Framework for Identifying Multiple Neurological Disorders From EEG Signals
URI https://ieeexplore.ieee.org/document/10025834
https://www.proquest.com/docview/2792132148
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2637-6415
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511818
  issn: 2637-6415
  databaseCode: RIE
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEIAXWzx48YEVq1X24MVD2qT7yOZYJNWDFqFVegv7lIIm0oe_393NphREwVsIOyHMJDuzuzPfAHBjuGBKaBNZV8kibIiImOY4EtTR2TMktN_TfX1MJxM2n2fPoVjd18JorX3yme67S3-Wryq5cVtlA4cLJQzhFmilKa2LtbYbKj5WTlhzFBlng9ls2nfdwftoiDLi8Ak7rsf3UvkxAXuvMj765_scg8MQPsJRbe8TsKfLUyBGm3Xl0auQlwrmngphJeG4ybyCNjSFdU2ur2uCTyGPEHo4R5j_YIPiXFnJ6gPm-T2cLt4cYbkDXsb57O4hCr0TIpkguzBUiBmElGaYYBkTYygTVEiZIkJxbG8JTkWCMMmQFRDKGCSHQohYuYCRUXQG2mVV6nMAU8OxjeNiynmGFUOMq5jINDGp1ljKpAsGjVoLGcDirr_Fe-EXGHFWWEMUzhBFMEQX3G4lPmuoxh9jO07xO-NqnXdBrzFdEX67VeFoiIlrvcQufhG7BAfu6XUWWQ-018uNvgL78mu9WC2v_Rf1DZnxyuc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dS8MwEMCDTkFf_EDF6dQ8-OJDt3ZJ2vRxSOfEbQirsrfQfMlAW9mHf79J2o6BKPhWSo6WuzZ3Se5-B8CtzjiVXGnPuErqYU24R1WGPR5aOnuMuHJ7uq_DaDym02n8XBWru1oYpZRLPlNte-nO8mUhVnarrGNxoYQivA12CMZdvyzXWm-puGg5oPVhpB930nTStv3B26iLYmIBChvOx3VT-TEFO7_SP_znGx2BgyqAhL3S4sdgS-UngPdWy8LBV2GWS5g4LoSRhP069wqa4BSWVbmusgmOqkxC6PAc1QwIaxjnwkgWHzBJHuBk9mYZy6fgpZ-k9wOv6p7giQCZpaFEVCMkFcUEC59oHVIeciEiRELsm1s8C3mAMImREeBSayS6nHNf2pCRhugMNPIiV-cARjrDJpLzwyyLsaSIZtInIgp0pBQWImiCTq1WJiq0uO1w8c7cEsOPmTEEs4ZglSGa4G4t8VliNf4Ye2oVvzGu1HkTtGrTserHWzDLQwxs8yV68YvYDdgbpKMhGz6Ony7Bvn1SmVPWAo3lfKWuwK74Ws4W82v3dX0DULrOLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+and+Efficient+Framework+for+Identifying+Multiple+Neurological+Disorders+From+EEG+Signals&rft.jtitle=IEEE+transactions+on+technology+and+society&rft.au=Tawhid%2C+Md.+Nurul+Ahad&rft.au=Siuly%2C+Siuly&rft.au=Wang%2C+Kate&rft.au=Wang%2C+Hua&rft.date=2023-03-01&rft.issn=2637-6415&rft.eissn=2637-6415&rft.volume=4&rft.issue=1&rft.spage=76&rft.epage=86&rft_id=info:doi/10.1109%2FTTS.2023.3239526&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TTS_2023_3239526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6415&client=summon